A role for vitamin D in the pathogenesis and treatment of Mycobacterium leprae (mLEP) has been presumed for many years. Pafients suffering from the progressive, bacilli-abundant lepromatous form (L-lep) ofthe disease are more likely to be vitamin D-deficient and benefit clinically from ultraviolet B (sunlight) irradiation or dietary supplementation vitamin D. Such patients are also at risk for developing dysregulated over- production of the active vitamin D metabolite 1,25-dihydroxyvitamin D (1,25D) from circulating 25- hydroxyvitamin D (25D) by disease-activated macrophages. On the other hand, intracellular 1,25D synthesis and action at the level of the vitamin D receptor (VDR) is crucial for mounting an antimicrobial response to mLEP. Therefore, the mechanism(s) that govern vitamin D metabolism and action in leprosy is a key component to the disease. Our recent studies In vitro clearly demonstrate the differential expression of the functional elements ofthe vitamin D system, including CYP27B1-hydroxylase and the VDR in Type I and II interferon-driven, T-lep and L-lep granulomas, respectively. Taken together, these clinical and laboratory findings lead us to theorize that mLEP Infection and the respective T-lep or L-lep downstream interferon- directed pathways, will differentially Impact the synthesis, metabolism and function of active vitamin D metabolites in the macrophage and other elicited, VDR-expressing inflammatory cells in the infectious microenvironment ofthe host with leprosy. To test this hypothesis, we will undertake three conceptually novel, mechanistic aims. First, the vitamin D system components (CYP2R1, vitamin D hydroxylase;CYP27B1;CYP24A1, 24-hydroxylase;and VDR) will be quantitatively mapped in T-lep and L-lep granulomas at the single cell level. Second, the orchestrated effects of T-lep or L-lep immune response secretomes, and associated downstream interferon responses, on the metabolism and immunoaction of vitamin D in human inflammatory cells will be characterized using innovative molecular tools developed in Projects 1 and 3. Third, using recently-conceived RNA sequencing technologies, the functional consequences ofthe human host vitamin D deficient state, and its rescue In vitro and in vivo, on immune responses to and killing of mLEP will be probed. When analyzed in concert with the experimental results of the other CORT projects, it is anticipated that this work will set the stage for the practice of manipulating human vitamin D balance in promotion ofthe innate and adaptive immune response in leprosy specifically and in granuloma-forming diseases in general.

Public Health Relevance

When analyzed in concert with the experimental results of the other CORT projects, it is our expectation that the experimental plan set forth here will accomplish two goals. First, this work will describe conditions for vitamin D supplementation in populations where leprosy and vitamin D deficiency co-exist. Second, these results will set the stage for the practice of manipulating human vitamin D balance in promotion of the immune response in leprosy and other inflammatory diseases of the skin.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZAR1-KM)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Inkeles, Megan S; Scumpia, Philip O; Swindell, William R et al. (2015) Comparison of molecular signatures from multiple skin diseases identifies mechanisms of immunopathogenesis. J Invest Dermatol 135:151-9
Smale, Stephen T (2014) Transcriptional regulation in the immune system: a status report. Trends Immunol 35:190-4
Montoya, Dennis; Inkeles, Megan S; Liu, Phillip T et al. (2014) IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med 6:250ra114
Adams, John S; Rafison, Brandon; Witzel, Sten et al. (2014) Regulation of the extrarenal CYP27B1-hydroxylase. J Steroid Biochem Mol Biol 144 Pt A:22-7
Chun, Rene F; Liu, Philip T; Modlin, Robert L et al. (2014) Impact of vitamin D on immune function: lessons learned from genome-wide analysis. Front Physiol 5:151
Teles, Rosane M B; Graeber, Thomas G; Krutzik, Stephan R et al. (2013) Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses. Science 339:1448-53