During the previous funding cycle of the Wake Forest Center for Botanical Lipids, we demonstrated that Echium oil (EO), a botanical oil enriched in stearidonic acid (18:4 w3), the immediate downstream product of the rate-limiting delta-6 desaturation of alpha-linolenic acid (18:3 w3), reduces plasma lipids, inflammation, and atherosclerosis as well as fish oil (FO), but we do not know the exact mechanisms for the protection. EO also contains 11% gamma-linolenic acid (GLA, 18:3 w6), which is the delta-6 desaturation product of linoleic acid (18:2 w6) and thus, can provide substrate for conversion to anti-inflammatory series 1 prostaglandin (PGEI). However, we do not know whether a botanical oil that is enriched in GLA, such as borage oil (BO; 25% GLA), is equally protective or less protective than EO. The goal of project 1 in the renewal application is to investigate whether EO and BO are equally atheroprotective and to determine anti-atherogenic mechanisms ofthese botanical oils. Our primary hypothesis is that both EO and BO will reduce atherosclerosis relative to palm oil (PO), by attenuating the rise of proinflammatory monocytes in blood and the trafficking of monocytes into atherosclerotic lesions (specific aim 1). Furthermore, we hypothesize that EO and BO will result in alternative activation of macrophages, relative to PO, resulting in less inflammatory macrophages (specific aim 2). Finally, we propose that the polyunsaturated fatty acid (PUFA)-induced macrophage alternative activation will occur through multiple mechanisms that include antagonism of proinflammatory gene transactivation, PPARgamma-dependent transactivation of anti-inflammatory genes, and PPARgamma-dependent transrepression of pro-inflammatory genes (specific aim 3). The proposed mechanistic studies should allow us to determine the best botanical oils or combinations to move into human trials to test for reduction of atherosclerosis risk and inflammation and to improve our basic information regarding the mechanism of action of botanical oils in chronic disease prevention.

Public Health Relevance

This project will fill gaps in knowledge regarding the extent to which EO and BO can substitute for FO in providing protection from atherosclerosis. Furthermore, these studies will provide mechanistic insight into the effects of PUFAs with regard to macrophage activation and inflammatory state. Finally, the basic information generated regarding mechanisms of action of botanical oils in chronic diseases will result in better design of botanical oil combinations to improve human health and disease prevention.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
2P50AT002782-06
Application #
8007042
Study Section
Special Emphasis Panel (ZAT1-SM (19))
Project Start
2010-07-01
Project End
2011-06-30
Budget Start
2010-07-01
Budget End
2011-08-31
Support Year
6
Fiscal Year
2010
Total Cost
$700,176
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Liu, Tao; Barrett, Nora A; Kanaoka, Yoshihide et al. (2018) Type 2 Cysteinyl Leukotriene Receptors Drive IL-33-Dependent Type 2 Immunopathology and Aspirin Sensitivity. J Immunol 200:915-927
Rahbar, Elaheh; Waits, Charlotte Mae K; Kirby Jr, Edward H et al. (2018) Allele-specific methylation in the FADS genomic region in DNA from human saliva, CD4+ cells, and total leukocytes. Clin Epigenetics 10:46
Rahbar, Elaheh; Ainsworth, Hannah C; Howard, Timothy D et al. (2017) Uncovering the DNA methylation landscape in key regulatory regions within the FADS cluster. PLoS One 12:e0180903
Shewale, Swapnil V; Brown, Amanda L; Bi, Xin et al. (2017) In vivo activation of leukocyte GPR120/FFAR4 by PUFAs has minimal impact on atherosclerosis in LDL receptor knockout mice. J Lipid Res 58:236-246
Chilton, Floyd H; Dutta, Rahul; Reynolds, Lindsay M et al. (2017) Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 9:
Samuchiwal, Sachin K; Balestrieri, Barbara; Raff, Hannah et al. (2017) Endogenous prostaglandin E2 amplifies IL-33 production by macrophages through an E prostanoid (EP)2/EP4-cAMP-EPAC-dependent pathway. J Biol Chem 292:8195-8206
Cui, Tao; Hester, Austin G; Seeds, Michael C et al. (2016) Impact of Genetic and Epigenetic Variations Within the FADS Cluster on the Composition and Metabolism of Polyunsaturated Fatty Acids in Prostate Cancer. Prostate 76:1182-91
Sergeant, Susan; Rahbar, Elaheh; Chilton, Floyd H (2016) Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur J Pharmacol 785:77-86
Miller, Leslie R; Jorgensen, Matthew J; Kaplan, Jay R et al. (2016) Alterations in levels and ratios of n-3 and n-6 polyunsaturated fatty acids in the temporal cortex and liver of vervet monkeys from birth to early adulthood. Physiol Behav 156:71-8
Sergeant, Susan; Ruczinski, Ingo; Ivester, Priscilla et al. (2016) Impact of methods used to express levels of circulating fatty acids on the degree and direction of associations with blood lipids in humans. Br J Nutr 115:251-61

Showing the most recent 10 out of 55 publications