Botanicals are capable of interacting with several cell regulating pathways at the same time. Our Center's goal is to explore the crosstalk between antioxidant-related pathways. The 5 key pathways to be examined are the (anti)oxidant (Nrf2/Keap1 and NADPH oxidase) pathways and their interactions with the NF-kappaB-, estrogen-, and hedgehog-signaling pathways. Research Project 1: Botanicals Targeting 5 Signaling Pathways to Prevent Prostate Cancer will test the hypothesis that five individual, widely-used botanical dietary supplements will prevent prostate cancer through the five key signaling pathways. Research Proiect 2: Botanical Phenolics on Oxidative/Nitrosative Signaling Pathways: Implication for Cerebral Ischemia will test the hypothesis that botanicals promote brain health and prevent neurodegeneration through modulating the NADPH oxidase-, Nrf2/Keap1-, and/or NF-kappaB-signaling pathways, and protein modifications by S-nitrosylation. Research Project 3: Antioxidant Botanicals and Antimicrobial Defenses will test the hypothesis that botanical compounds that possess potent antioxidant activity modulate cellular events associated with antimicrobial defense. The Center includes five core facilities. The Administrative Core will oversee the Center's research, training, and pilot programs. Core A: Botanicals/Plant Genomics Core will identify, cultivate, and document raw plant materials including novel cultivars of elderberry and soy. Core B: Nutrition/Animal Core will provide transgenic mice and prepare diets for the research projects. Core C: Analytical Chemistry Core will provide analytical support and quality control for quantifying botanical compounds and their metabolites, and verifying plant material. Core D: Interactions Core: Mega-sequencing/Proteomics/lnformatics/Nitrosylation) will provide novel technology for proteomic and nitrosylation analyses, DNA mega-sequencing for mRNA analysis, and data integration through bioinformatics and statistical support. MU is highly supportive of this Center and is providing funds to train and support four graduate research assistants. Pilot projects will help provide seed money for new botanical grants and allow career development of both new faculty and students. Our Center's approach using bioinformatics to explore 5 signaling pathways concurrently by the latest cutting edge technology in mRNA and protein analysis is highly innovative. This type of synergism, when combined with the botanical and pathway expertise of Center investigators, will generate new information important in human health.

Public Health Relevance

The botanicals we propose to study are already extensively used by the public, and though they have antioxidant properties that may offer cancer, immuno-, and neuroprotective effects, the molecular basis of these effects is largely not understood. Our overall goal is to test and identify botanicals and related molecular mechanisms that can potentially offer beneficial effects to maintain a healthy body and brain by preventing neurodegenerative and infectious diseases, as well as cancer.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Specialized Center (P50)
Project #
5P50AT006273-03
Application #
8326556
Study Section
Special Emphasis Panel (ZAT1-SM (19))
Program Officer
Hopp, Craig
Project Start
2010-09-01
Project End
2015-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
3
Fiscal Year
2012
Total Cost
$1,465,935
Indirect Cost
$486,996
Name
University of Missouri-Columbia
Department
Biochemistry
Type
Schools of Medicine
DUNS #
153890272
City
Columbia
State
MO
Country
United States
Zip Code
65211
Ajit, Deepa; Simonyi, Agnes; Li, Runting et al. (2016) Phytochemicals and botanical extracts regulate NF-κB and Nrf2/ARE reporter activities in DI TNC1 astrocytes. Neurochem Int 97:49-56
Johnson, Mitch C; Song, Hailong; Cui, Jiankun et al. (2016) Development of a Method and Validation for the Quantitation of FruArg in Mice Plasma and Brain Tissue Using UPLC-MS/MS. ACS Omega 1:663-668
Lin, Hui; Jackson, Glenn A; Lu, Yuan et al. (2016) Inhibition of Gli/hedgehog signaling in prostate cancer cells by "cancer bush" Sutherlandia frutescens extract. Cell Biol Int 40:131-42
Folk, William R; Smith, Aaron; Song, Hailong et al. (2016) Does Concurrent Use of Some Botanicals Interfere with Treatment of Tuberculosis? Neuromolecular Med 18:483-6
Qu, Zhe; Greenlief, C Michael; Gu, Zezong (2016) Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 15:1-14
Mudge, Elizabeth; Applequist, Wendy L; Finley, Jamie et al. (2016) Variation of Select Flavonols and Chlorogenic Acid Content of Elderberry Collected Throughout the Eastern United States. J Food Compost Anal 47:52-59
Song, Hailong; Lu, Yuan; Qu, Zhe et al. (2016) Effects of aged garlic extract and FruArg on gene expression and signaling pathways in lipopolysaccharide-activated microglial cells. Sci Rep 6:35323
Lu, Yuan; Li, Jilong; Cheng, Jianlin et al. (2015) Messenger RNA profile analysis deciphers new Esrrb responsive genes in prostate cancer cells. BMC Mol Biol 16:21
Walker, Jennifer M; Klakotskaia, Diana; Ajit, Deepa et al. (2015) Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer's disease mouse model. J Alzheimers Dis 44:561-72
Chuang, Dennis Y; Simonyi, Agnes; Kotzbauer, Paul T et al. (2015) Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 12:199

Showing the most recent 10 out of 49 publications