The developmental funds portion of our SPORE has proven to be one of the most vital aspects of our translational work in lung cancer. As will be detailed below, over the duration of the SPORE, several of our most productive full projects began as pilot projects funded through this Developmental Program. Also, this program has made possible the initiation of academic careers for multiple translational investigators who are now key players in this and other SPORES. It has also brought basic investigators to lung cancer research who might not have ever worked on these diseases. Finally, as will be evident below in the full presentation of three planned projects for the current proposal, we have used the Developmental Program mechanism to bring innovative new concepts and technology into the SPORE to foster our highest translational aims.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058184-18
Application #
8403071
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
2014-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
18
Fiscal Year
2013
Total Cost
$275,656
Indirect Cost
$91,582
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Kim, Jung-Hyun; Thimmulappa, Rajesh K; Kumar, Vineet et al. (2014) NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Invest 124:730-41
Ahuja, Nita; Easwaran, Hariharan; Baylin, Stephen B (2014) Harnessing the potential of epigenetic therapy to target solid tumors. J Clin Invest 124:56-63
Izumchenko, Evgeny; Chang, Xiaofei; Michailidi, Christina et al. (2014) The TGF?-miR200-MIG6 pathway orchestrates the EMT-associated kinase switch that induces resistance to EGFR inhibitors. Cancer Res 74:3995-4005
Li, Huili; Chiappinelli, Katherine B; Guzzetta, Angela A et al. (2014) Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget 5:587-98
Wrangle, John; Machida, Emi Ota; Danilova, Ludmila et al. (2014) Functional identification of cancer-specific methylation of CDO1, HOXA9, and TAC1 for the diagnosis of lung cancer. Clin Cancer Res 20:1856-64
Wrangle, John; Wang, Wei; Koch, Alexander et al. (2013) Alterations of immune response of Non-Small Cell Lung Cancer with Azacytidine. Oncotarget 4:2067-79
Singh, Anju; Happel, Christine; Manna, Soumen K et al. (2013) Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis. J Clin Invest 123:2921-34
Rudin, Charles M; Brahmer, Julie R; Juergens, Rosalyn A et al. (2013) Phase 2 study of pemetrexed and itraconazole as second-line therapy for metastatic nonsquamous non-small-cell lung cancer. J Thorac Oncol 8:619-23
Reed, M D; Tellez, C S; Grimes, M J et al. (2013) Aerosolised 5-azacytidine suppresses tumour growth and reprogrammes the epigenome in an orthotopic lung cancer model. Br J Cancer 109:1775-81
Kim, James; Aftab, Blake T; Tang, Jean Y et al. (2013) Itraconazole and arsenic trioxide inhibit Hedgehog pathway activation and tumor growth associated with acquired resistance to smoothened antagonists. Cancer Cell 23:23-34

Showing the most recent 10 out of 231 publications