The main goal of the Career Development Program is to prepare new investigators for independent careers in lung cancer research. It is expected that Career Development Awardees will spend between two and four years in a productive scientific environment, after which time they will establish independent programs in research related to lung cancer, either at institutions affiliated with the University of Colorado Lung Cancer SPORE or another institution. The Career Development committee annually reviews the progress of each awardee by receiving reports and by discussions with the awardee and the awardee's mentor. The Career Development committee also solicits applications for new awardees. This is done by campus-wide mailings and on some occasions by national letters and journal advertisements. Applicants complete a written application that is reviewed by the committee and the committee also interviews the applicants. The committee makes recommendations to the SPORE Executive Committee which makes final selection and determines the amount of the award in consultation with the applicant and mentor. Institutional funds are used to increase the award amounts above those provided by the grant. For the renewal period we are requesting $50,000 annually. This will be matched with up to $50,000 of institutional funds to provide an average of $50,000 to each of two awardees per year. We believe the program has been successful. Since its inception in 1993, the SPORE has provided support to 20 awardees. Nine of these continue to work on lung cancer. In addition, three other awardees continue scientific investigation in industry and two are academic laboratory investigators. One awardee is in private practice and one retired to care for her family. Three of the awardees are from underrepresented minority groups and 7 are female. No major changes are anticipated in the program with the exception of an increase in the award amounts.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058187-18W1
Application #
8719576
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
18
Fiscal Year
2013
Total Cost
$123,330
Indirect Cost
$43,315
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
McDaniel, Nellie K; Cummings, Christopher T; Iida, Mari et al. (2018) MERTK Mediates Intrinsic and Adaptive Resistance to AXL-targeting Agents. Mol Cancer Ther 17:2297-2308
Ghosh, Moumita; Miller, York E; Vandivier, R William et al. (2018) Reply to Sohal: Airway Basal Cell Reprogramming and Epithelial-Mesenchymal Transition: A Potential Key to Understanding Early Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:1645-1646
Ghosh, Moumita; Miller, York E; Nakachi, Ichiro et al. (2018) Exhaustion of Airway Basal Progenitor Cells in Early and Established Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 197:885-896
Farago, Anna F; Taylor, Martin S; Doebele, Robert C et al. (2018) Clinicopathologic Features of Non-Small-Cell Lung Cancer Harboring an NTRK Gene Fusion. JCO Precis Oncol 2018:
He, Yayi; Liu, Sangtian; Mattei, Jane et al. (2018) The combination of anti-KIR monoclonal antibodies with anti-PD-1/PD-L1 monoclonal antibodies could be a critical breakthrough in overcoming tumor immune escape in NSCLC. Drug Des Devel Ther 12:981-986
Genova, Carlo; Socinski, Mark A; Hozak, Rebecca R et al. (2018) EGFR Gene Copy Number by FISH May Predict Outcome of Necitumumab in Squamous Lung Carcinomas: Analysis from the SQUIRE Study. J Thorac Oncol 13:228-236
Merrick, Daniel T; Edwards, Michael G; Franklin, Wilbur A et al. (2018) Altered Cell-Cycle Control, Inflammation, and Adhesion in High-Risk Persistent Bronchial Dysplasia. Cancer Res 78:4971-4983
Li, Howard Y; McSharry, Maria; Walker, Deandra et al. (2018) Targeted overexpression of prostacyclin synthase inhibits lung tumor progression by recruiting CD4+ T lymphocytes in tumors that express MHC class II. Oncoimmunology 7:e1423182
Ravichandran, Kameswaran; Holditch, Sara; Brown, Carolyn N et al. (2018) IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am J Physiol Renal Physiol 314:F356-F366
Hilberg, Frank; Tontsch-Grunt, Ulrike; Baum, Anke et al. (2018) Triple Angiokinase Inhibitor Nintedanib Directly Inhibits Tumor Cell Growth and Induces Tumor Shrinkage via Blocking Oncogenic Receptor Tyrosine Kinases. J Pharmacol Exp Ther 364:494-503

Showing the most recent 10 out of 435 publications