The goal of the Colorado Lung Cancer SPORE program is to conduct translational research studies that will lead to a reduction in the lung cancer mortality rates through improved early detection, prevention, and treatment. This goal is accomplished through four novel projects, a developmental research program, and a career development program all of which are supported by four interacting shared core resources. The future impact of the program will be to hasten translation of scientific discoveries from their development to approved human use of products and services benefiting patients. The projects proposed for this next cycle are Targeting FGFR Signaling in Lung Cancer (Proj. 1);Improving the Outcome of EGFR TKI Therapy Using Rational Combinations (Proj. 2);Prostacyclin and Peroxisome Proliferator-Activated Receptor-y in Lung Cancer (Proj. 3);and Predictors of Pulmonary Nodule Malignancy (Proj. 4). The proposed shared core resources are a Tissue Bank and Biomarkers Core (A);Clinical Trials Core (B);Biostatitistics/Bioinformatics/lnformatics Core (C);and Administrative Core (D). Each Core will facilitate the translation of the research conducted by the Projects. Our SPORE studies have already had a strong impact by contributing to a transformation in the way high risk subjects and lung cancer patients are approached and treated. We are proud of our role in: 1) the development and approval of EGFR TKI therapy coupled with predictive mariners for patient selection;2) the approval of crizotinib and the use of the FISH break-apart probe as a predictive biomarker;3) the use of etinostat (HDAC inhibitor) for improving outcome of EGFR TKI therapy;4) the huge potential of low dose spiral CT screening to reduce lung cancer mortality, especially if barriers can be overcome;5) changing the landscape of chemoprevention trials allowing rapid completion of moderately sized trials and the potential for a major national randomized phase III trial. We believe that our SPORE studies and collaboration have played a key role in the transformation of lung cancer diagnosis and therapy and that our proposed studies will be equally effective in bringing new products and approaches to lung cancer patients. We believe that we can continue our success in the next grant cycle with translation of discovery to early SPORE trials and handoff of more advanced discoveries to industry and cooperative groups.

Public Health Relevance

Our SPORE program is designed to provide advances in early detection, prevention, biomarkers, and therapy of lung cancer to improve the overall 5-year survival rates (currently only 16%). We will use a multi-disciplinary approach combining clinical and basic scientists to develop novel therapies, new chemoprevention strategies, improve outcomes from existing therapies, and explore more effective early detection strategies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058187-19A1
Application #
8664635
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Program Officer
Ujhazy, Peter
Project Start
1997-05-20
Project End
2019-04-30
Budget Start
2014-09-17
Budget End
2015-08-31
Support Year
19
Fiscal Year
2014
Total Cost
$2,162,000
Indirect Cost
$751,781
Name
University of Colorado Denver
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Symonds, Jennifer M; Ohm, Angela M; Tan, Aik-Choon et al. (2016) PKCδ regulates integrin αVβ3 expression and transformed growth of K-ras dependent lung cancer cells. Oncotarget 7:17905-19
Dziadziuszko, Rafal; Le, Anh T; Wrona, Anna et al. (2016) An Activating KIT Mutation Induces Crizotinib Resistance in ROS1-Positive Lung Cancer. J Thorac Oncol 11:1273-81
Saichaemchan, S; Ariyawutyakorn, W; Varella-Garcia, M (2016) Fibroblast Growth Factor Receptors: From the Oncogenic Pathway to Targeted Therapy. Curr Mol Med 16:40-62
Scarborough, Hannah A; Helfrich, Barbara A; Casas-Selves, Matias et al. (2016) AZ1366: An inhibitor of tankyrase and the canonical Wnt pathway that limits the persistence of non-small cell lung cancer cells following EGFR inhibition. Clin Cancer Res :
Poczobutt, Joanna M; Nguyen, Teresa T; Hanson, Dwight et al. (2016) Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment. J Immunol 196:891-901
Li, Bob T; Ross, Dara S; Aisner, Dara L et al. (2016) HER2 Amplification and HER2 Mutation Are Distinct Molecular Targets in Lung Cancers. J Thorac Oncol 11:414-9
Yoshida, Takeshi; Song, Lanxi; Bai, Yun et al. (2016) ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One 11:e0147344
Ariyawutyakorn, Witthawat; Saichaemchan, Siriwimon; Varella-Garcia, Marileila (2016) Understanding and Targeting MET Signaling in Solid Tumors - Are We There Yet? J Cancer 7:633-49
Bunn Jr, Paul A; Minna, John D; Augustyn, Alexander et al. (2016) Small Cell Lung Cancer: Can Recent Advances in Biology and Molecular Biology Be Translated into Improved Outcomes? J Thorac Oncol 11:453-74
Helfrich, Barbara A; Kim, Jihye; Gao, Dexiang et al. (2016) Barasertib (AZD1152), a Small Molecule Aurora B Inhibitor, Inhibits the Growth of SCLC Cell Lines In Vitro and In Vivo. Mol Cancer Ther 15:2314-2322

Showing the most recent 10 out of 350 publications