Radiation therapy is one of two primary treatments for clinically-localized prostate cancer (PCa) and is the principal therapy for locally-advanced disease associated with a higher grade, stage and/or PSA. While the success rate for both radiation and surgery is high for low-grade organ-confined disease, the estimated ten year disease-free-survival for advanced disease is less than 50%. Therefore, a means to improve the therapeutic index for patients with clinically-localized high stage and/or grade prostate cancer would significantly decrease the morbidity and mortality of this disease. In this proposal, a model is described to test the hypothesis that the therapeutic index for local treatment of prostate cancer can be improved by selectively sensitizing prostatic cancer cells to ionizing radiation. Here, the natural pathways of genomic DNA damage repair will be the therapeutic target. Inherited mutations in these pathways, such as in Ataxia Telangiectasia, result in cellular hypersensitivity to ionizing radiation (IR). We have previously shown that mammalian cancer cells be made similarly hypersensitive to IR by knocking down DNA repair protein levels through RNA interference (RNAi) therapy. While promising, this strategy requires a means to selectively target prostatic cells. We now propose three specific aims to develop a model for selective radiation sensitization of prostate cancer cells through targeted RNAi therapy.
In Aim 1, we will determine the identity of additional novel gene targets in DNA repair pathways for enhanced radiation sensitization. Secondly, in Aim 2, we will develop an in vivo model for RNAi targeting and radiation sensitization through the use of a Prostate Specific Membrane Antigen (PSMA) targeting RNA aptamer developed in our laboratory. This aptamer, xPSM-AlO, has been previously applied to deliver RNAi therapeutics to prostate tumor cells in vivo. Lastly, in Aim 3, we will extend these pre-clinical studies to a phase I clinical trial to determine safety and selective target gene knock-down. These studies have great potential in developing the first tissue-selective radiation sensitization agent and in translating a novel strategy to decrease the morbidity and mortality of locally advanced prostate cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058236-18
Application #
8379602
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
18
Fiscal Year
2012
Total Cost
$185,218
Indirect Cost
$93,311
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Pradhan, Anjan K; Talukdar, Sarmistha; Bhoopathi, Praveen et al. (2017) mda-7/IL-24 Mediates Cancer Cell-Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Res 77:949-959
Zamboni, Camila G; Kozielski, Kristen L; Vaughan, Hannah J et al. (2017) Polymeric nanoparticles as cancer-specific DNA delivery vectors to human hepatocellular carcinoma. J Control Release 263:18-28
Sharma, Anup; Mendonca, Janet; Ying, James et al. (2017) The prostate metastasis suppressor gene NDRG1 differentially regulates cell motility and invasion. Mol Oncol 11:655-669
Winchester, Danyelle A; Till, Cathee; Goodman, Phyllis J et al. (2017) Association between variants in genes involved in the immune response and prostate cancer risk in men randomized to the finasteride arm in the Prostate Cancer Prevention Trial. Prostate 77:908-919
Guedes, Liana B; Almutairi, Fawaz; Haffner, Michael C et al. (2017) Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of TP53 Missense Mutation in Prostate Cancer. Clin Cancer Res 23:4693-4703
Markowski, Mark C; Silberstein, John L; Eshleman, James R et al. (2017) Clinical Utility of CLIA-Grade AR-V7 Testing in Patients With Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2017:
Graham, Mindy Kim; Principessa, Lorenzo; Antony, Lizamma et al. (2017) Low p16(INK4a) Expression in Early Passage Human Prostate Basal Epithelial Cells Enables Immortalization by Telomerase Expression Alone. Prostate 77:374-384
Torres, Alba; Alshalalfa, Mohammed; Tomlins, Scott A et al. (2017) Comprehensive Determination of Prostate Tumor ETS Gene Status in Clinical Samples Using the CLIA Decipher Assay. J Mol Diagn 19:475-484
Lotan, Tamara L; Torres, Alba; Zhang, Miao et al. (2017) Somatic molecular subtyping of prostate tumors from HOXB13 G84E carriers. Oncotarget 8:22772-22782
Platz, Elizabeth A; Kulac, Ibrahim; Barber, John R et al. (2017) A Prospective Study of Chronic Inflammation in Benign Prostate Tissue and Risk of Prostate Cancer: Linked PCPT and SELECT Cohorts. Cancer Epidemiol Biomarkers Prev 26:1549-1557

Showing the most recent 10 out of 725 publications