The Biostatistics Core provides support to the 6 projects of the Prostate Cancer SPORE in the areas of study design, data collection and visualization, database development and management, data quality control, data analysis, bioinformatics, and interpretation. In this regard, members of the Core play an integral role as members of the team for each project, and provide solutions to commonplace and complex or unique problems that arise during the planning and execution of the projects. Each project has a primary biostatistician/epidemiologist associated with the project, but most projects will have input from 2 Core investigators, which contributes to interactions among the projects. Core investigators have extensive experience in a wide range of biostatistical, epidemiologic and translational research methodologies and applications. Because of the emphasis on translational science in the SPORE program, the Core also includes members with experience in both epidemiology and biostatistics, who provide important input for population studies and translation to clinical cohorts.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA058236-18S1
Application #
8719555
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
2013-09-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
18
Fiscal Year
2013
Total Cost
$106,131
Indirect Cost
$40,618
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Karnes, R Jeffrey; Choeurng, Voleak; Ross, Ashley E et al. (2018) Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol 73:168-175
Menezes, Mitchell E; Bhoopathi, Praveen; Pradhan, Anjan K et al. (2018) Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Adv Cancer Res 138:143-182
Jiang, Wen; Ulmert, David; Simons, Brian W et al. (2018) The impact of age on radium-223 distribution and an evaluation of molecular imaging surrogates. Nucl Med Biol 62-63:1-8
Tsang, Sabrina H; Peisch, Samuel F; Rowan, Brendan et al. (2018) Association between Trichomonas vaginalis and prostate cancer mortality. Int J Cancer :
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24
Martino, Thiago; Kudrolli, Tarana A; Kumar, Binod et al. (2018) The orally active pterocarpanquinone LQB-118 exhibits cytotoxicity in prostate cancer cell and tumor models through cellular redox stress. Prostate 78:140-151
Kaur, Harsimar B; Guedes, Liana B; Lu, Jiayun et al. (2018) Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol 31:1539-1552
Zhu, Yezi; Sharp, Adam; Anderson, Courtney M et al. (2018) Novel Junction-specific and Quantifiable In Situ Detection of AR-V7 and its Clinical Correlates in Metastatic Castration-resistant Prostate Cancer. Eur Urol 73:727-735
Teply, Benjamin A; Wang, Hao; Luber, Brandon et al. (2018) Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 19:76-86
Zennami, Kenji; Choi, Su Mi; Liao, Ross et al. (2018) PDCD4 Is an Androgen-Repressed Tumor Suppressor that Regulates Prostate Cancer Growth and Castration Resistance. Mol Cancer Res :

Showing the most recent 10 out of 750 publications