Prostate cancer is one of the most commonly diagnosed cancers in men in the United States and a major cause of cancer morbidity and mortality. Throughout its history, the Johns Hopkins Prostate Cancer SPORE has focused on reducing prostate cancer incidence and mortality by translating new laboratory research discoveries into improvements in prostate cancer screening, detection, diagnosis, prevention, and treatment. This competitive renewal proposal contains six new Translational Research Projects, three Core Resources, two Career Development Projects, and two Developmental Research Projects. Project #1 aims to introduce an entirely new imaging/therapy platform featuring the use of tumor-selective promoter driven transgenes;Project #2 hopes to deliver a therapeutic chimeric RNA, featuring an aptamer mediating selective binding to prostate-specific membrane antigen (PSMA) and an siRNA against the DNA-dependent protein kinase, to selectively augment the radiosensitivity of prostate cancer cells;Project #3 plans to exploit the tendency for prostate cancer immune tolerance to become abrogated for a brief period of time following initiation of androgen deprivation therapy as a window for vaccine immunotherapy;Project #4 proposes to follow-up on a successful synthetic lethal functional genomics screen of new molecular drug targets as partners for nucleoside analog DNA methyltransferase inhibitors to deliver treatment combinations to clinical trials for advanced prostate cancer;Project #5 commandeers the tumor-specific homing properties of bone marrow derived mesenchymal stem cells to create a platform for selective delivery and activation of the protoxin PRX302 near prostate cancer cells;Project #6, a population science study, tests the utility of measured telomere lengths in stromal cells and cancer cells in predicting risk for prostate cancer death. These Projects are supported by an Administrative Core, a Pathology/Biospecimen Core, and a Biostatistics/Bioinformatics Core. Finally, the Career Development and Developmental Research Programs, supplemented by $1,000,000 annually from the Patrick C. Walsh Prostate Cancer Research Fund, comprise pipelines of human capital and innovative ideas, respectively, which will fuel future SPORE advances.

Public Health Relevance

This SPORE is dedicated to improving outcomes from prostate cancer, which affects 1 in 5 to 1 in 6 men in the United States, by delivering new approaches to prostate cancer detection, diagnosis, and treatment. Over the planned 5 years of funding, each of these new approaches, as monitored using aggressive milestones/timelines, should move measurably closer to clinical application and benefit.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058236-19A1
Application #
8739709
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Hruszkewycz, Andrew M
Project Start
1997-09-30
Project End
2019-08-31
Budget Start
2014-09-25
Budget End
2015-08-31
Support Year
19
Fiscal Year
2014
Total Cost
$1,877,328
Indirect Cost
$700,774
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M et al. (2018) Current or recent smoking is associated with more variable telomere length in prostate stromal cells and prostate cancer cells. Prostate 78:233-238
Krueger, Timothy E G; Thorek, Daniel L J; Denmeade, Samuel R et al. (2018) Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 7:651-663
Shrestha, Eva; White, James R; Yu, Shu-Han et al. (2018) Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol 199:161-171
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74
Das, Swadesh K; Pradhan, Anjan K; Bhoopathi, Praveen et al. (2018) The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Res 78:2852-2863
Karnes, R Jeffrey; Choeurng, Voleak; Ross, Ashley E et al. (2018) Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol 73:168-175
Menezes, Mitchell E; Bhoopathi, Praveen; Pradhan, Anjan K et al. (2018) Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Adv Cancer Res 138:143-182
Jiang, Wen; Ulmert, David; Simons, Brian W et al. (2018) The impact of age on radium-223 distribution and an evaluation of molecular imaging surrogates. Nucl Med Biol 62-63:1-8
Tsang, Sabrina H; Peisch, Samuel F; Rowan, Brendan et al. (2018) Association between Trichomonas vaginalis and prostate cancer mortality. Int J Cancer :
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24

Showing the most recent 10 out of 750 publications