Prostate cancer is one of the most commonly diagnosed cancers in men in the United States and a major cause of cancer morbidity and mortality. Throughout its history, the Johns Hopkins Prostate Cancer SPORE has focused on reducing prostate cancer incidence and mortality by translating new laboratory research discoveries into improvements in prostate cancer screening, detection, diagnosis, prevention, and treatment. This competitive renewal proposal contains six new Translational Research Projects, three Core Resources, two Career Development Projects, and two Developmental Research Projects. Project #1 aims to introduce an entirely new imaging/therapy platform featuring the use of tumor-selective promoter driven transgenes;Project #2 hopes to deliver a therapeutic chimeric RNA, featuring an aptamer mediating selective binding to prostate-specific membrane antigen (PSMA) and an siRNA against the DNA-dependent protein kinase, to selectively augment the radiosensitivity of prostate cancer cells;Project #3 plans to exploit the tendency for prostate cancer immune tolerance to become abrogated for a brief period of time following initiation of androgen deprivation therapy as a window for vaccine immunotherapy;Project #4 proposes to follow-up on a successful synthetic lethal functional genomics screen of new molecular drug targets as partners for nucleoside analog DNA methyltransferase inhibitors to deliver treatment combinations to clinical trials for advanced prostate cancer;Project #5 commandeers the tumor-specific homing properties of bone marrow derived mesenchymal stem cells to create a platform for selective delivery and activation of the protoxin PRX302 near prostate cancer cells;Project #6, a population science study, tests the utility of measured telomere lengths in stromal cells and cancer cells in predicting risk for prostate cancer death. These Projects are supported by an Administrative Core, a Pathology/Biospecimen Core, and a Biostatistics/Bioinformatics Core. Finally, the Career Development and Developmental Research Programs, supplemented by $1,000,000 annually from the Patrick C. Walsh Prostate Cancer Research Fund, comprise pipelines of human capital and innovative ideas, respectively, which will fuel future SPORE advances.

Public Health Relevance

This SPORE is dedicated to improving outcomes from prostate cancer, which affects 1 in 5 to 1 in 6 men in the United States, by delivering new approaches to prostate cancer detection, diagnosis, and treatment. Over the planned 5 years of funding, each of these new approaches, as monitored using aggressive milestones/timelines, should move measurably closer to clinical application and benefit.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Hruszkewycz, Andrew M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Ku, ShengYu; Lasorsa, Elena; Adelaiye, Remi et al. (2014) Inhibition of Hsp90 augments docetaxel therapy in castrate resistant prostate cancer. PLoS One 9:e103680
Regter, Sietze; Hedayati, Mohammad; Zhang, Yonggang et al. (2014) Androgen withdrawal fails to induce detectable tissue hypoxia in the rat prostate. Prostate 74:805-10
Chalfin, Heather J; Frank, Steven M; Feng, Zhaoyong et al. (2014) Allogeneic versus autologous blood transfusion and survival after radical prostatectomy. Transfusion 54:2168-74
Bhatnagar, Akrita; Wang, Yuchuan; Mease, Ronnie C et al. (2014) AEG-1 promoter-mediated imaging of prostate cancer. Cancer Res 74:5772-81
Brennen, W Nathaniel; Rosen, D Marc; Chaux, Alcides et al. (2014) Pharmacokinetics and toxicology of a fibroblast activation protein (FAP)-activated prodrug in murine xenograft models of human cancer. Prostate 74:1308-19
Paller, C J; Olatoye, D; Xie, S et al. (2014) The effect of the frequency and duration of PSA measurement on PSA doubling time calculations in men with biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis 17:28-33
Durham, Nicholas M; Nirschl, Christopher J; Jackson, Christopher M et al. (2014) Lymphocyte Activation Gene 3 (LAG-3) modulates the ability of CD4 T-cells to be suppressed in vivo. PLoS One 9:e109080
Gurel, Bora; Lucia, M Scott; Thompson Jr, Ian M et al. (2014) Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 23:847-56
Lutz, Eric R; Wu, Annie A; Bigelow, Elaine et al. (2014) Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2:616-31
Zheng, Qizhi; Peskoe, Sarah B; Ribas, Judit et al. (2014) Investigation of miR-21, miR-141, and miR-221 expression levels in prostate adenocarcinoma for associated risk of recurrence after radical prostatectomy. Prostate 74:1655-62

Showing the most recent 10 out of 579 publications