Approximately 1000 radical prostatectomies are performed per year at our institution and we currently have over 14,000 such patients in our database, 6.5% of which are from African Americans. We have collected fresh frozen prostate tumor tissues from more than 1900 patients, represented by more than 7000 frozen tissue blocks. We have created tissue microarrays containing prostate cancer from 926 patients, most with long term follow-up. Core B has the following Specific Aims: 1)To maintain and enhance a repository of prostate tissues containing a wide range of neoplastic and non-neoplastic samples from both fresh frozen and paraffin blocks, prostatic fluids, DNA, RNA, and protein, and, to distribute these samples to SPORE and other investigators;2) to provide high quality histopathologic diagnoses of tissue specimens and tissue microarrays;3) To continue to design, produce and distribute tissue microarrays using human prostate tissues, cell lines, and xenografts;4) To continue to improve and add tools to our open source tissue microarray database and software (TMAJ) (http://tmaj.pathology.jhmi.edu) including the development of new open source image analysis tools

Public Health Relevance

Biological specimens are the centerpiece of research efforts geared to translate laboratory discoveries into patients. High quality procurement, processing, diagnosis, annotation, storage, and distribution of pathology tissue specimens are vital to translational research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058236-19A1
Application #
8739717
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
1997-09-30
Project End
2019-08-31
Budget Start
2014-09-25
Budget End
2015-08-31
Support Year
19
Fiscal Year
2014
Total Cost
$162,763
Indirect Cost
$62,292
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Joshu, Corinne E; Peskoe, Sarah B; Heaphy, Christopher M et al. (2018) Current or recent smoking is associated with more variable telomere length in prostate stromal cells and prostate cancer cells. Prostate 78:233-238
Krueger, Timothy E G; Thorek, Daniel L J; Denmeade, Samuel R et al. (2018) Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 7:651-663
Shrestha, Eva; White, James R; Yu, Shu-Han et al. (2018) Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol 199:161-171
Lu, Yunqi; Hu, Zhongyi; Mangala, Lingegowda S et al. (2018) MYC Targeted Long Noncoding RNA DANCR Promotes Cancer in Part by Reducing p21 Levels. Cancer Res 78:64-74
Das, Swadesh K; Pradhan, Anjan K; Bhoopathi, Praveen et al. (2018) The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Res 78:2852-2863
Karnes, R Jeffrey; Choeurng, Voleak; Ross, Ashley E et al. (2018) Validation of a Genomic Risk Classifier to Predict Prostate Cancer-specific Mortality in Men with Adverse Pathologic Features. Eur Urol 73:168-175
Menezes, Mitchell E; Bhoopathi, Praveen; Pradhan, Anjan K et al. (2018) Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Adv Cancer Res 138:143-182
Jiang, Wen; Ulmert, David; Simons, Brian W et al. (2018) The impact of age on radium-223 distribution and an evaluation of molecular imaging surrogates. Nucl Med Biol 62-63:1-8
Tsang, Sabrina H; Peisch, Samuel F; Rowan, Brendan et al. (2018) Association between Trichomonas vaginalis and prostate cancer mortality. Int J Cancer :
Baena-Del Valle, Javier A; Zheng, Qizhi; Esopi, David M et al. (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244:11-24

Showing the most recent 10 out of 750 publications