The Developmental Research Program (DRP) is a special feature of the SPORE grant which allows sponsored institutions to fund important new pilot projects with promising translational potential, but would have difficulty in providing sufficient preliminary data for an independently funded NIH grant. This is a crucial part of our SPORE program as it provides a pipeline and testing ground for novel substrates for translational impact. These projects are intended to last one year with the possibility of a second year of support with the demonstration of sufficient progress and are budgeted with the intention that the majority of the funds be spent on supplies, rather than salary support. Pilot projects which make significant progress and are deemed to be capable of high translational impact will be considered for promotion to full SPORE projects. To be eligible, the applicant must have a current academic appointment at any of the Johns Hopkins Medical Institutions, Howard University or University of Maryland. Applicants must hold a M.D. or Ph.D. degree or both. The applicants are expected to provide evidence of a significant research commitment (at least 15% effort commitment) to ensure that the proposal can in fact be addressed in an effective and productive way. As many as 10 developmental research projects will be funded annually, two by funds budgeted within the SPORE and the remainder through funds available through The Patrick C. Walsh Prostate Cancer Research Fund. The Developmental Research Program will be maintained throughout the grant period.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA058236-19A1
Application #
8739719
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
1997-09-30
Project End
2019-08-31
Budget Start
2014-09-25
Budget End
2015-08-31
Support Year
19
Fiscal Year
2014
Total Cost
$143,052
Indirect Cost
$54,748
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Guedes, Liana B; Morais, Carlos L; Almutairi, Fawaz et al. (2016) Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer. Clin Cancer Res 22:4651-63
Haffner, Michael C; Weier, Christopher; Xu, Meng Meng et al. (2016) Molecular evidence that invasive adenocarcinoma can mimic prostatic intraepithelial neoplasia (PIN) and intraductal carcinoma through retrograde glandular colonization. J Pathol 238:31-41
Barakat, David J; Mendonca, Janet; Barberi, Theresa et al. (2016) C/EBPβ regulates sensitivity to bortezomib in prostate cancer cells by inducing REDD1 and autophagosome-lysosome fusion. Cancer Lett 375:152-61
Murtola, Teemu J; Gurel, Bora; Umbehr, Martin et al. (2016) Inflammation in Benign Prostate Tissue and Prostate Cancer in the Finasteride Arm of the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 25:463-9
Jackson, Christopher M; Kochel, Christina M; Nirschl, Christopher J et al. (2016) Systemic Tolerance Mediated by Melanoma Brain Tumors Is Reversible by Radiotherapy and Vaccination. Clin Cancer Res 22:1161-72
Hedayati, Mohammad; Haffner, Michael C; Coulter, Jonathan B et al. (2016) Androgen Deprivation Followed by Acute Androgen Stimulation Selectively Sensitizes AR-Positive Prostate Cancer Cells to Ionizing Radiation. Clin Cancer Res 22:3310-9
Trock, Bruce J; Fedor, Helen; Gurel, Bora et al. (2016) PTEN loss and chromosome 8 alterations in Gleason grade 3 prostate cancer cores predicts the presence of un-sampled grade 4 tumor: implications for active surveillance. Mod Pathol 29:764-71
Wu, Jianguo; Ivanov, Andrei I; Fisher, Paul B et al. (2016) Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. Elife 5:
Levy, Oren; Brennen, W Nathaniel; Han, Edward et al. (2016) A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials 91:140-50
Lotan, Tamara L; Wei, Wei; Morais, Carlos L et al. (2016) PTEN Loss as Determined by Clinical-grade Immunohistochemistry Assay Is Associated with Worse Recurrence-free Survival in Prostate Cancer. Eur Urol Focus 2:180-188

Showing the most recent 10 out of 691 publications