The Program has been a major focus of the SPORE because it provides for a continuous flow of innovative ideas and activity to stimulate investigation in the context of SPORE translational research. The Developmental Research Program provides a means to respond to new opportunities, and is designed to encourage and facilitate new research efforts. The Program takes advantage of the broad expertise of researchers at The Johns Hopkins University and of external investigators by providing funds for pilot projects with potential for development into full-fledged translational research avenues, collaborations, and new methodologies for integration into other Research Projects. In most prior years, the Cancer Center has augmented the funding provided to each of our pilot project recipients by approximately 50% per award (on average). In the past two years, the formation of a GI Cancer program within the Oncology Center has also provided support for additional basic and clinical pilot projects that are not intended to be as translational as the goals of the SPORE Developmental Projects. Within this year, we also have gained a commitment for an additional two pancreatic cancer pilot projects to be funded by institutional sources each year. These resources, and funding pressures from a reduced overall budget for the proposed SPORE funding period, have allowed us to shift some of the financial sources from the SPORE to the institution, as reflected in the newly proposed Developmental Research Budget.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA062924-21
Application #
8727984
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
21
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Wood, Laura D; Noë, Michaël; Hackeng, Wenzel et al. (2017) Patients with McCune-Albright syndrome have a broad spectrum of abnormalities in the gastrointestinal tract and pancreas. Virchows Arch 470:391-400
Luchini, Claudio; Robertson, Scott A; Hong, Seung-Mo et al. (2017) PBRM1 loss is a late event during the development of cholangiocarcinoma. Histopathology 71:375-382
Murphy, Adrian G; Foley, Kelly; Rucki, Agnieszka A et al. (2017) Stromal Annexin A2 expression is predictive of decreased survival in pancreatic cancer. Oncotarget 8:106405-106414
Rucki, Agnieszka A; Foley, Kelly; Zhang, Pingbo et al. (2017) Heterogeneous Stromal Signaling within the Tumor Microenvironment Controls the Metastasis of Pancreatic Cancer. Cancer Res 77:41-52
Jinawath, Natini; Shiao, Meng-Shin; Norris, Alexis et al. (2017) Alterations of type II classical cadherin, cadherin-10 (CDH10), is associated with pancreatic ductal adenocarcinomas. Genes Chromosomes Cancer 56:427-435
Tsujikawa, Takahiro; Kumar, Sushil; Borkar, Rohan N et al. (2017) Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep 19:203-217
Suenaga, Masaya; Sadakari, Yoshihiko; Almario, Jose Alejandro et al. (2017) Using an endoscopic distal cap to collect pancreatic fluid from the ampulla (with video). Gastrointest Endosc 86:1152-1156.e2
Todoric, Jelena; Antonucci, Laura; Di Caro, Giuseppe et al. (2017) Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 32:824-839.e8
Mattox, Austin K; Wang, Yuxuan; Springer, Simeon et al. (2017) Bisulfite-converted duplexes for the strand-specific detection and quantification of rare mutations. Proc Natl Acad Sci U S A 114:4733-4738
Johnson 3rd, Burles A; Yarchoan, Mark; Lee, Valerie et al. (2017) Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 23:1656-1669

Showing the most recent 10 out of 843 publications