SPORE Core B. Pathology and Tissue Resources Core. The Tissue Resources and Molecular Pathology Core will provide routine and innovative tissues and materials, as well as conventional and molecular pathology assistance, essential for achieving the aims of the SPORE projects. Routine materials include tumors and non-malignant lung specimens and tumor cell lines. Over 2,500 well-characterized tumors with annotated clinical data and 200 cell lines have been banked, and over 15,000 aliquots of tumor or cell line pellets, RNA or DNA or paraffin sections are available to SPORE investigators. State-of-art molecular pathology facilities devoted to lung cancer translational research directed by experienced lung cancer molecular pathologists are available.
Our Aim 1 is to collect, process, store, catalog and distribute tissues, cells and blood specimens, both malignant and non-malignant, and relevant clinico-pathologic data, as requested by the various component projects of the SPORE program.
Aim 2 is to develop and utilize innovative or routine tissue and cell resources that will aid in the successful completion of the SPORE program aims. Innovative materials include: a) cell pellets and tissue microarrays (TMAs) and high throughput image analysis of in situ techniques, b) new lung cancer cell lines and lung cancer xenografts made directly from patient specimens, c) new immortalized and non-immortalized human bronchial epithelial cells (HBECs) and 3-dimensional organotypic cultures.
Aim 3 is to perform and interpret tissue-based molecular methodologies in close collaboration with the component projects of the SPORE program to satisfy their approved aims. This includes immunohistochemistry (IHC) information on over 90 lung cancer relevant biomarkers on the TMAs with information stored in an image database and integrated with the clinical annotations.
Aim 4 is to promote collaboration among investigators in this SPORE, other lung cancer SPORES, other investigators in MD Anderson Cancer Center, UT Southwestern Medical Center, and other investigators nationally and internationally pursuing lung cancer relevant research. All of our five projects in this application will utilize CORE materials. Heavy utilization of our routine and innovative materials, and close interactions with the SPORE investigators will greatly aid the successful completion of the aims of our SPORE proposal. The SPORE Tissue Resource Core is designed and has operated as a facility receiving support from several other sources beyond SPORE funding including in a manner non-overlapping with other Cancer Center activities at both MD Anderson and UT Southwestern Medical Centers. This means that SPORE discoveries and data have far reaching beneficial effects across the range of lung cancer research conducted at these two institutions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA070907-15
Application #
8375374
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
15
Fiscal Year
2012
Total Cost
$258,996
Indirect Cost
$44,327
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Mender, Ilgen; LaRanger, Ryan; Luitel, Krishna et al. (2018) Telomerase-Mediated Strategy for Overcoming Non-Small Cell Lung Cancer Targeted Therapy and Chemotherapy Resistance. Neoplasia 20:826-837
Gong, Ke; Guo, Gao; Gerber, David E et al. (2018) TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. J Clin Invest 128:2500-2518
Wang, Jacqueline F; Pu, Xingxiang; Zhang, Xiaoshan et al. (2018) Variants with a low allele frequency detected in genomic DNA affect the accuracy of mutation detection in cell-free DNA by next-generation sequencing. Cancer 124:1061-1069
Rashdan, Sawsan; Minna, John D; Gerber, David E (2018) Diagnosis and management of pulmonary toxicity associated with cancer immunotherapy. Lancet Respir Med 6:472-478
Pierzynski, Jeanne A; Ye, Yuanqing; Lippman, Scott M et al. (2018) Socio-demographic, Clinical, and Genetic Determinants of Quality of Life in Lung Cancer Patients. Sci Rep 8:10640
Akbay, Esra A; Kim, James (2018) Autochthonous murine models for the study of smoker and never-smoker associated lung cancers. Transl Lung Cancer Res 7:464-486
Zhang, Wei; Girard, Luc; Zhang, Yu-An et al. (2018) Small cell lung cancer tumors and preclinical models display heterogeneity of neuroendocrine phenotypes. Transl Lung Cancer Res 7:32-49
Tan, Xiaochao; Banerjee, Priyam; Liu, Xin et al. (2018) The epithelial-to-mesenchymal transition activator ZEB1 initiates a prometastatic competing endogenous RNA network. J Clin Invest 128:1267-1282
McMillan, Elizabeth A; Ryu, Myung-Jeom; Diep, Caroline H et al. (2018) Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell 173:864-878.e29
Walser, Tonya C; Jing, Zhe; Tran, Linh M et al. (2018) Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells. Cancer Res 78:1986-1999

Showing the most recent 10 out of 1059 publications