SPORE Core B. Pathology and Tissue Resources Core. The Tissue Resources and Molecular Pathology Core will provide routine and innovative tissues and materials, as well as conventional and molecular pathology assistance, essential for achieving the aims of the SPORE projects. Routine materials include tumors and non-malignant lung specimens and tumor cell lines. Over 2,500 well-characterized tumors with annotated clinical data and 200 cell lines have been banked, and over 15,000 aliquots of tumor or cell line pellets, RNA or DNA or paraffin sections are available to SPORE investigators. State-of-art molecular pathology facilities devoted to lung cancer translational research directed by experienced lung cancer molecular pathologists are available.
Our Aim 1 is to collect, process, store, catalog and distribute tissues, cells and blood specimens, both malignant and non-malignant, and relevant clinico-pathologic data, as requested by the various component projects of the SPORE program.
Aim 2 is to develop and utilize innovative or routine tissue and cell resources that will aid in the successful completion of the SPORE program aims. Innovative materials include: a) cell pellets and tissue microarrays (TMAs) and high throughput image analysis of in situ techniques, b) new lung cancer cell lines and lung cancer xenografts made directly from patient specimens, c) new immortalized and non-immortalized human bronchial epithelial cells (HBECs) and 3-dimensional organotypic cultures.
Aim 3 is to perform and interpret tissue-based molecular methodologies in close collaboration with the component projects of the SPORE program to satisfy their approved aims. This includes immunohistochemistry (IHC) information on over 90 lung cancer relevant biomarkers on the TMAs with information stored in an image database and integrated with the clinical annotations.
Aim 4 is to promote collaboration among investigators in this SPORE, other lung cancer SPORES, other investigators in MD Anderson Cancer Center, UT Southwestern Medical Center, and other investigators nationally and internationally pursuing lung cancer relevant research. All of our five projects in this application will utilize CORE materials. Heavy utilization of our routine and innovative materials, and close interactions with the SPORE investigators will greatly aid the successful completion of the aims of our SPORE proposal. The SPORE Tissue Resource Core is designed and has operated as a facility receiving support from several other sources beyond SPORE funding including in a manner non-overlapping with other Cancer Center activities at both MD Anderson and UT Southwestern Medical Centers. This means that SPORE discoveries and data have far reaching beneficial effects across the range of lung cancer research conducted at these two institutions.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Goodwin, Justin; Neugent, Michael L; Lee, Shin Yup et al. (2017) The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat Commun 8:15503
Cao, Xiaobo; Zhao, Yang; Wang, Jing et al. (2017) TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 8:107621-107629
Zhou, Fei; Wang, Yanru; Liu, Hongliang et al. (2017) Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk-A re-analysis of eight GWASs. Mol Carcinog 56:1227-1238
Tagal, Vural; Wei, Shuguang; Zhang, Wei et al. (2017) SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun 8:14098
Cardnell, Robert J; Li, Lerong; Sen, Triparna et al. (2017) Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget 8:73419-73432
Jafri, Mohammad Alam; Al-Qahtani, Mohammed Hussein; Shay, Jerry William (2017) Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 44:117-131
Rabellino, Andrea; Andreani, Cristina; Scaglioni, Pier Paolo (2017) The Role of PIAS SUMO E3-Ligases in Cancer. Cancer Res 77:1542-1547
Faubert, Brandon; Li, Kevin Y; Cai, Ling et al. (2017) Lactate Metabolism in Human Lung Tumors. Cell 171:358-371.e9
Quek, Kelly; Li, Jun; Estecio, Marcos et al. (2017) DNA methylation intratumor heterogeneity in localized lung adenocarcinomas. Oncotarget 8:21994-22002
Fu, Rong; Wang, Pei; Ma, Weiping et al. (2017) A statistical method for detecting differentially expressed SNVs based on next-generation RNA-seq data. Biometrics 73:42-51

Showing the most recent 10 out of 1004 publications