SPORE Core B. Pathology and Tissue Resources Core. The Tissue Resources and Molecular Pathology Core will provide routine and innovative tissues and materials, as well as conventional and molecular pathology assistance, essential for achieving the aims of the SPORE projects. Routine materials include tumors and non-malignant lung specimens and tumor cell lines. Over 2,500 well-characterized tumors with annotated clinical data and 200 cell lines have been banked, and over 15,000 aliquots of tumor or cell line pellets, RNA or DNA or paraffin sections are available to SPORE investigators. State-of-art molecular pathology facilities devoted to lung cancer translational research directed by experienced lung cancer molecular pathologists are available.
Our Aim 1 is to collect, process, store, catalog and distribute tissues, cells and blood specimens, both malignant and non-malignant, and relevant clinico-pathologic data, as requested by the various component projects of the SPORE program.
Aim 2 is to develop and utilize innovative or routine tissue and cell resources that will aid in the successful completion of the SPORE program aims. Innovative materials include: a) cell pellets and tissue microarrays (TMAs) and high throughput image analysis of in situ techniques, b) new lung cancer cell lines and lung cancer xenografts made directly from patient specimens, c) new immortalized and non-immortalized human bronchial epithelial cells (HBECs) and 3-dimensional organotypic cultures.
Aim 3 is to perform and interpret tissue-based molecular methodologies in close collaboration with the component projects of the SPORE program to satisfy their approved aims. This includes immunohistochemistry (IHC) information on over 90 lung cancer relevant biomarkers on the TMAs with information stored in an image database and integrated with the clinical annotations.
Aim 4 is to promote collaboration among investigators in this SPORE, other lung cancer SPORES, other investigators in MD Anderson Cancer Center, UT Southwestern Medical Center, and other investigators nationally and internationally pursuing lung cancer relevant research. All of our five projects in this application will utilize CORE materials. Heavy utilization of our routine and innovative materials, and close interactions with the SPORE investigators will greatly aid the successful completion of the aims of our SPORE proposal. The SPORE Tissue Resource Core is designed and has operated as a facility receiving support from several other sources beyond SPORE funding including in a manner non-overlapping with other Cancer Center activities at both MD Anderson and UT Southwestern Medical Centers. This means that SPORE discoveries and data have far reaching beneficial effects across the range of lung cancer research conducted at these two institutions.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
3P50CA070907-15W1
Application #
8731338
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
2013-09-12
Project End
2014-08-31
Budget Start
2013-09-12
Budget End
2014-08-31
Support Year
15
Fiscal Year
2013
Total Cost
$49,189
Indirect Cost
$12,046
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Wen, Chi-Pang; Zhang, Fanmao; Liang, Dong et al. (2015) The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res 21:193-200
Chiappori, A A; Kolevska, T; Spigel, D R et al. (2015) A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol 26:354-62
Mender, Ilgen; Gryaznov, Sergei; Dikmen, Z Gunnur et al. (2015) Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2'-deoxyguanosine. Cancer Discov 5:82-95
Kim, Eric S; Ye, Yuanqing; Vaporciyan, Ara A et al. (2015) Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J Thorac Oncol 10:302-8
Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed et al. (2014) Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 42:e104
Fujimoto, Junya; Wistuba, Ignacio I (2014) Current concepts on the molecular pathology of non-small cell lung carcinoma. Semin Diagn Pathol 31:306-13
Yang, Yanan; Ahn, Young-Ho; Chen, Yulong et al. (2014) ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest 124:2696-708
Lin, Steven H; Wang, Jing; Saintigny, Pierre et al. (2014) Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics 15:1079
Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X et al. (2014) NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Mol Biol Cell 25:1782-92
Holohan, Brody; Wright, Woodring E; Shay, Jerry W (2014) Cell biology of disease: Telomeropathies: an emerging spectrum disorder. J Cell Biol 205:289-99

Showing the most recent 10 out of 647 publications