The major thrust of this study is to identify new germline polymorphisms in micro-RNAs (miRs) that are associated with increased risk of developing lung cancer (LC) or provide LC prognostic information. Such loci will be important in early cancer detection and patient management. In addition, we want to determine if miRs provide a blood biomarker for LC detection and if certain miR biomarkers also play a functional role in LC pathogenesis. miRNAs are a class of small non-coding endogenous RNAs capable of regulating an estimated third of human genes. miRNAs can function as oncogenes or tumor suppressor genes depending on the cellular context. In cancer, dysregulation of tumor suppressive or oncogenic miRNAs could have profound effects on various cellular processes including proliferation, differentiation, and cell death. miRNA relevant genomic variations may have regulatory effects on gene expression and cellular processing by altering gene splicing, modulating miRNA-target interaction, and disrupting miRNA biogenesis. However, no studies have systematically screened and validated SNPs in miRNA pathways as modulators of LC risk and outcomes. One of the added advantages of miRNA and miR pathway targeted study of SNPs (miR-SNPs) is that most miR-SNPs are not covered by current GWAS chips. Therefore, we propose to conduct a systematic analysis of SNPs in miRs and miR pathway(s) as susceptibility factors for NSCLC risk and clinical outcome, incorporating germline miR-SNP genotyping, somatic miRNA profiling, circulating miRNA detection, and functional characterization. This proposal builds upon a rich specimen repository, well annotated with comprehensive epidemiologic, clinical and genetic data, from one of the largest LC studies in the U. S., MD Anderson LC Study, along with the Harvard LC study. The four specific aims are:
Aim 1) To screen and validate a custom array of ~6,000 miR-SNPs as predictors of NSCLC risk using a three-stage design (discovery, internal and external validation) in a total of 4,800 Caucasian cases and 4,800 matched controls, as well as 1,600 pairs of African American cases and controls;
Aim 2) To screen and validate the above 6,000 miR-SNPs as predictors of NSCLC recurrence in the subset of surgically resected early stage NSCLC patients using a similar three-stage design;
Aim 3) To identify circulating miRNAs as predictors for recurrence in early stage NSCLC using a testing and validation design;
Aim 4) To determine the functional impact on lung cancer of significant miR-SNPs and miRNAs identified from the above aims.

Public Health Relevance

Primary lung cancer (LC) is the most common cancer and the leading cause of cancer death and non-small cell lung cancer (NSCLC) accounts for over 80% of LC cases. This project aims to identify genetic miR variants for NSCLC risk and recurrence and circulating miR biomarkers for recurrence in early stage patients. The identified biomarkers may be incorporated into risk prediction models to improve risk stratification for cost-effective surveillance, screening, detection, and personalized management of early stage lung cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Wen, Chi-Pang; Zhang, Fanmao; Liang, Dong et al. (2015) The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res 21:193-200
Chiappori, A A; Kolevska, T; Spigel, D R et al. (2015) A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer. Ann Oncol 26:354-62
Mender, Ilgen; Gryaznov, Sergei; Dikmen, Z Gunnur et al. (2015) Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2'-deoxyguanosine. Cancer Discov 5:82-95
Kim, Eric S; Ye, Yuanqing; Vaporciyan, Ara A et al. (2015) Telomere length and recurrence risk after curative resection in patients with early-stage non-small-cell lung cancer: a prospective cohort study. J Thorac Oncol 10:302-8
Ludlow, Andrew T; Robin, Jerome D; Sayed, Mohammed et al. (2014) Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 42:e104
Fujimoto, Junya; Wistuba, Ignacio I (2014) Current concepts on the molecular pathology of non-small cell lung carcinoma. Semin Diagn Pathol 31:306-13
Yang, Yanan; Ahn, Young-Ho; Chen, Yulong et al. (2014) ZEB1 sensitizes lung adenocarcinoma to metastasis suppression by PI3K antagonism. J Clin Invest 124:2696-708
Lin, Steven H; Wang, Jing; Saintigny, Pierre et al. (2014) Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition. BMC Genomics 15:1079
Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X et al. (2014) NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Mol Biol Cell 25:1782-92
Holohan, Brody; Wright, Woodring E; Shay, Jerry W (2014) Cell biology of disease: Telomeropathies: an emerging spectrum disorder. J Cell Biol 205:289-99

Showing the most recent 10 out of 647 publications