KRAS-mutant lung adenocarcinoma represents a therapeutic dilemma owing to a dearth of effective treatment options that specifically target cancer cells with oncogenic KRAS mutations. Thoracic radiation therapy is used in many lung adenocarcinomas but there is little or no information on how to sensitize lung cancers to radiation, particularly in the context of individual tumor oncogenotypes. Based on prior work in this SPORE Project we have preliminary data that provide a rationale approach to this important problem using both human and transgenic mouse preclinical models (KRAS-mutant human orthotopic xenograft lung adenocarcinoma model, and """"""""KP"""""""", Kras-mutant/Tp53-mutant, mice, which develop metastatic lung adenocarcinomas owing to down-regulation of the microRNA-200 (miR-200) family). Based on these data, we hypothesize and plan to test that: (a) downstream signaling pathways activated by KRAS mutations and miR-200 down-regulation, namely those regulated by MAPK/ERK kinase (MEK1/2) and/or phosphatidylinositol 3-kinase (PI3K), are key mediators of radiation resistance in KRAS-mutant lung adenocarcinoma;and (b) KRAS codon 12 substitutions (G12D, G12V, and G12C) and microRNA-200 (miR- 200) family expression levels predict tumor cell sensitivity to PI3K targeted therapeutics. We propose to investigate these hypotheses with the following Specific Aims:
Specific Aim 1 : To carry out a """"""""mouse-human co-clinical trial"""""""" with the MEK1/2 inhibitor Trametinib and examine mechanisms of acquired resistance to Trametinib.
Specific Aim 2 : To implement a human lung cancer clinical trial that examines whether Trametinib mediated MEK1/2 inhibition sensitizes KRAS-mutant lung adenocarcinomas to chemo-radiotherapy.
Specific Aim 3 : To examine whether specific KRAS codon 12 substitutions and/or miR-200 expression levels predict radiosensitization by PI3K pathway antagonism in our preclinical models. Findings from these studies on inhibitors of MEK1/2 and PI3K/mT0R as radiosensitizers can have immediate impact on personalizing lung cancer clinical care and lay the groundwork for future clinical trials. We have assembled a multidisciplinary team of applied and basic investigators fo ensure the success of this project.

Public Health Relevance

KRAS is the most commonly activated oncogene in lung adenocarcinoma, accounting for about 40,000 cases/year in the USA. Thus, progress in the treatment of this cancer will have a large impact. We will examine whether inhibitors of MEK1/2 and PI3K/mTOR in advanced phase of clinical development are beneficial as radiation sensitizers. By integrating cellular and mouse studies with a human trial we will inform and promote the development of novel therapies for this devastating disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Goodwin, Justin; Neugent, Michael L; Lee, Shin Yup et al. (2017) The distinct metabolic phenotype of lung squamous cell carcinoma defines selective vulnerability to glycolytic inhibition. Nat Commun 8:15503
Cao, Xiaobo; Zhao, Yang; Wang, Jing et al. (2017) TUSC2 downregulates PD-L1 expression in non-small cell lung cancer (NSCLC). Oncotarget 8:107621-107629
Zhou, Fei; Wang, Yanru; Liu, Hongliang et al. (2017) Susceptibility loci of CNOT6 in the general mRNA degradation pathway and lung cancer risk-A re-analysis of eight GWASs. Mol Carcinog 56:1227-1238
Tagal, Vural; Wei, Shuguang; Zhang, Wei et al. (2017) SMARCA4-inactivating mutations increase sensitivity to Aurora kinase A inhibitor VX-680 in non-small cell lung cancers. Nat Commun 8:14098
Cardnell, Robert J; Li, Lerong; Sen, Triparna et al. (2017) Protein expression of TTF1 and cMYC define distinct molecular subgroups of small cell lung cancer with unique vulnerabilities to aurora kinase inhibition, DLL3 targeting, and other targeted therapies. Oncotarget 8:73419-73432
Jafri, Mohammad Alam; Al-Qahtani, Mohammed Hussein; Shay, Jerry William (2017) Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Semin Cancer Biol 44:117-131
Rabellino, Andrea; Andreani, Cristina; Scaglioni, Pier Paolo (2017) The Role of PIAS SUMO E3-Ligases in Cancer. Cancer Res 77:1542-1547
Faubert, Brandon; Li, Kevin Y; Cai, Ling et al. (2017) Lactate Metabolism in Human Lung Tumors. Cell 171:358-371.e9
Quek, Kelly; Li, Jun; Estecio, Marcos et al. (2017) DNA methylation intratumor heterogeneity in localized lung adenocarcinomas. Oncotarget 8:21994-22002
Fu, Rong; Wang, Pei; Ma, Weiping et al. (2017) A statistical method for detecting differentially expressed SNVs based on next-generation RNA-seq data. Biometrics 73:42-51

Showing the most recent 10 out of 1004 publications