) Background: Epidemiologic and experimental studies suggest that oral contraceptives (OCP) and fenretinide, N-(4hydroxypheny1) retinamide (4-HPR), may reduce the risk of developing epithelial ovarian cancer, but mechanisms underlying the chemopreventive activity of these agents remain unknown. Studies in primates and with human ovarian explants suggest that 4-HPR and progestins can induce TGF beta in stromal cells and apoptosis in the ovarian surface epithelium (OSE). Either 4-HPR or a combination of progestin and TGF beta can induce apoptosis in immortalized OSE (IOSE). 4-HPR can induce apoptosis in isolated normal OSE and this is enhanced with TGF beta. 4-HPR induces apoptosis in different tumor cell lines by generating reactive oxygen species or by binding to retinoic acid receptors. TGF beta and retinoids induce apoptosis by downregulating anti-apoptotic proteins. Hypotheses and Specific Aims: Based on these data, we will test the hypothesis that a combination of OCP and 4-HPR will induce apoptosis in a greater fraction of OSE than either agent alone, related in part to the production of TGF beta by ovarian stromal cells. We propose that 4-HPR induces apoptosis by stimulating production of reactive oxygen species, where as OCP components downregulate anti-apoptosis by stimulating production of reactive oxygen species, where as OCP components downregulate anti-apoptotoic proteins. TGF beta can augment apoptosis produced by 4-HPR or by progestin. In this portion of the SPORE we will (1) explore mechanisms underlying the chemopreventive activity of OCP and 4-HPR in OSE from women at normal and increased risk of ovarian cancer, (2) seek novel bio-markers for the impact of TGF beta on apoptosis induced by progestin, and (3) conduct a series of clinical trials to test the impact of OCP and an optimal dose of 4-HPR, individually and in combination, on induction of TGF beta in the stroma and apoptosis in the OSE of women at normal and increased risk of ovarian cancer. Significance: These studies may provide a rationale for the combined use of two promising agents for preventing ovarian cancer and elucidate mechanisms of their action.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Umamaheswaran, Sujanitha; Dasari, Santosh K; Yang, Peiying et al. (2018) Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 37:203-211
Wang, Jue; Zhao, Wei; Guo, Huifang et al. (2018) AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 18:742
Huang, Yan; Hu, Wei; Huang, Jie et al. (2018) Inhibiting Nuclear Phospho-Progesterone Receptor Enhances Antitumor Activity of Onapristone in Uterine Cancer. Mol Cancer Ther 17:464-473
Yang, Hailing; Mao, Weiqun; Rodriguez-Aguayo, Cristian et al. (2018) Paclitaxel Sensitivity of Ovarian Cancer Can be Enhanced by Knocking Down Pairs of Kinases that Regulate MAP4 Phosphorylation and Microtubule Stability. Clin Cancer Res 24:5072-5084
Rhyasen, Garrett W; Yao, Yi; Zhang, Jingwen et al. (2018) BRD4 amplification facilitates an oncogenic gene expression program in high-grade serous ovarian cancer and confers sensitivity to BET inhibitors. PLoS One 13:e0200826
Chen, Jian; Zaidi, Sobia; Rao, Shuyun et al. (2018) Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-? Pathway. Gastroenterology 154:195-210
Sun, Chaoyang; Yin, Jun; Fang, Yong et al. (2018) BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell 33:401-416.e8
Hu, Xiaowen; Sood, Anil K; Dang, Chi V et al. (2018) The role of long noncoding RNAs in cancer: the dark matter matters. Curr Opin Genet Dev 48:8-15
Jung, Youn-Sang; Wang, Wenqi; Jun, Sohee et al. (2018) Deregulation of CRAD-controlled cytoskeleton initiates mucinous colorectal cancer via ?-catenin. Nat Cell Biol 20:1303-1314
Jung, Youn-Sang; Jun, Sohee; Kim, Moon Jong et al. (2018) TMEM9 promotes intestinal tumorigenesis through vacuolar-ATPase-activated Wnt/?-catenin signalling. Nat Cell Biol 20:1421-1433

Showing the most recent 10 out of 648 publications