The overall goal of the University of Texas M. D. Anderson Cancer Center (MDACC) SPORE is to reduce the morbidity and mortality of ovarian cancer through innovative translational research in the detection and treatment of ovarian cancer based upon the molecular, cellular and clinical biology of the disease. IVIDACC contains a unique community of >35 talented investigators who are dedicated to translational, clinical, fundamental and population-based ovarian cancer research, 20 of whom participate directly in the SPORE. Collaborators include 25 investigators from 9 universities and 4 companies. Over the last 4 years IVIDACC has cared for 1,055 new patients with ovarian and peritoneal cancer and have placed 241 on clinical trials. MDACC has given high priority to ovarian cancer research through recruitment, salary support, clinical facilities, laboratory space and philanthropic funds. MDACC with the help of the SPORE has recruited 5 outstanding faculty members with an interest in ovarian cancer research, strengthened the research infrastructure, funded 13 developmental research projects (DRP) and supported 4 career development program (DRP) awardees. Over the last 5 years SPORE investigators have contributed 381 peer-reviewed publications regarding ovarian cancer. Achievements include: 1) development of a two-stage screening strategy for early ovarian cancer that has provided a 30% positive predictive value for detecting early stage disease;2) identification of a panel of biomarkers that detect 87% of early stage ovarian cancers;2) discovery of pericytes as targets for anti-angiogenic therapy;3) observation of a 39% response rate with aflibercept (VEGF-Trap) and docetaxel against platinum-resistant disease;4) detection of response to the AKT inhibitor perifosine in ovarian cancers with PTEN mutations;5) discovery that as many as 30% of ovarian cancer patients have BRCA dysfunction;and 6) identification of PVT-1 and PFDN4 as targets for siRNA therapy. Five project proposed for the next grant period will: 1) evaluate a multi-marker algorithm for early detection of ovarian cancer;2) target Dll4/Notch signaling to reverse resistance and synergize with anti-VEGF therapy;3) test personalized therapy of low grade cancer with MEK, AKT and IGFR inhibition;4) personalize treatment for high grade ovarian cancers with activated PI3K signaling or BRCA dysfunction;and 5) develop mesenchymal stem cells as vehicles for tumor tropic delivery of IFN-B in preclinical and clinical studies. This work will be supported by three cores: Administrative;Biostatistics, Bioinformatics and Systems Biology;and Pathology. Support will be provided for DRP and CDP recipients to attain peer-reviewed funding. Valuable advice will continue to be provided by internal, external and advocate advisors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Bottsford-Miller, Justin; Choi, Hyun-Jin; Dalton, Heather J et al. (2015) Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res 21:602-10
Sun, Yan; Hu, Limei; Zheng, Hong et al. (2015) MiR-506 inhibits multiple targets in the epithelial-to-mesenchymal transition network and is associated with good prognosis in epithelial ovarian cancer. J Pathol 235:25-36
Wen, Yunfei; Graybill, Whitney S; Previs, Rebecca A et al. (2015) Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer. Clin Cancer Res 21:448-59
Previs, Rebecca A; Coleman, Robert L; Harris, Adrian L et al. (2015) Molecular pathways: translational and therapeutic implications of the Notch signaling pathway in cancer. Clin Cancer Res 21:955-61
Zhang, Shu; Lu, Zhen; Unruh, Anna K et al. (2015) Clinically relevant microRNAs in ovarian cancer. Mol Cancer Res 13:393-401
Zhang, Shiwu; Mercado-Uribe, Imelda; Liu, Jinsong (2014) Tumor stroma and differentiated cancer cells can be originated directly from polyploid giant cancer cells induced by paclitaxel. Int J Cancer 134:508-18
Matsuo, Koji; Sheridan, Todd B; Mabuchi, Seiji et al. (2014) Estrogen receptor expression and increased risk of lymphovascular space invasion in high-grade serous ovarian carcinoma. Gynecol Oncol 133:473-9
Liu, Guoyan; Sun, Yan; Ji, Ping et al. (2014) MiR-506 suppresses proliferation and induces senescence by directly targeting the CDK4/6-FOXM1 axis in ovarian cancer. J Pathol 233:308-18
Rich, Thereasa A; Liu, Mei; Etzel, Carol J et al. (2014) Comparison of attitudes regarding preimplantation genetic diagnosis among patients with hereditary cancer syndromes. Fam Cancer 13:291-9
Zhang, S; Mercado-Uribe, I; Xing, Z et al. (2014) Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33:116-28

Showing the most recent 10 out of 381 publications