The goal of SPORE Project 1 is to develop effective strategies for earty detection of ovanan cancer in women at average risk for the disease. Given the prevalence of ovanan cancer among postmenopausal women, a diagnostic strategy must be moderately sensitive (>75%), but highly specific (>99.6%) to achieve a positive predictive value of 10%, i.e., 10 laparotomies for each case of ovarian cancer detected. One of the most promising approaches to early detection of this neoplasm is to use rising values of a serum marker such as CA 125 to prompt the performance of transvaginal sonography (TVS). Patients with abnormal TVS or a sufficiently rapid rise in CA 125 undergo exploratory surgery. During the last grant period, we have evaluated this strategy and found a positive predictive value of 30%. If one is to pursue a two-stage strategy for earty detection, the initial stage must be optimally sensitive. No single marker is likely to be adequately sensitive and multiple markers may be required to detect the full spectrum of ovarian cancers. Simple addition of multiple markers may increase sensitivity, but generally decreases specificity, posing a particular problem in a disease with the prevalence of ovarian cancer. We have identified a panel of four biomarkers (CA125, HE4, CEA and sVCAM-1) that detect 87% of early stage disease at 98% specificity. In this project, our aims are Aim 1: To evaluate the specificity and positive predictive value of an algorithm for early detection of ovarian cancer based on a panel of serum biomarkers measured annually. Multiple biomarkers promise to increase sensitivity for earty stage and preclinical disease, provided that specificity is maintained, permitting performance of TVS in a small fraction of participants. We will test the hypothesis that rising values of multiple biomarkers will prompt the referral of no more than 2% of women for TVS and achieve a positive predictive value >10%.
Aim 2 : To develop a """"""""point of service"""""""" test for multiple serum biomarkers using a lab-on-a-chip sensor system that is performed on blood from a finger-stick. Screening could be simplified if results were immediately available and venipuncture was not required. We will test the hypothesis that measurement of the levels of the four biomarkers with a lab-on-a-chip.nanosystem will correlate with standard laboratory assays.
Aim 3 : To identify a panel of serum autoantibodies for eariy detection of ovarian cancer. Small volumes of ovanan cancer may not release sufficient antigen to be detected, but could evoke an antibody response. We will test the hypothesis that detection of autoantibodies to mutant and wild-type proteins will improve detection of ovarian cancers that do not elevate antigen levels.

Public Health Relevance

When ovarian cancer is detected in stage 1, up to 90% of patients can be cured with currently available cytoreductive surgery and combination chemotherapy, whereas advanced disease (stage lll-IV) can be cured in less than 30% of cases. Only 20-25% of patients present in earty stage. Detection of a larger fraction of women with early stage or pre-clinical ovanan cancer could impact substantially on the rate of cure.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA083639-15
Application #
8731076
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
15
Fiscal Year
2014
Total Cost
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77030
AACR Project GENIE Consortium (2017) AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov 7:818-831
Sans, Marta; Gharpure, Kshipra; Tibshirani, Robert et al. (2017) Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Res 77:2903-2913
Robertson, A Gordon; Shih, Juliann; Yau, Christina et al. (2017) Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 32:204-220.e15
Yeung, Tsz-Lun; Leung, Cecilia S; Wong, Kwong-Kwok et al. (2017) ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 8:16951-16963
Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K et al. (2017) Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress. Biochem J 474:731-749
Cho, Min Soon; Noh, Kyunghee; Haemmerle, Monika et al. (2017) Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 130:1235-1242
Harjes, U; Bridges, E; Gharpure, K M et al. (2017) Antiangiogenic and tumour inhibitory effects of downregulating tumour endothelial FABP4. Oncogene 36:912-921
Sekihara, Kazumasa; Saitoh, Kaori; Han, Lina et al. (2017) Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget 8:34552-34564
Yang, Wei-Lei; Gentry-Maharaj, Aleksandra; Simmons, Archana et al. (2017) Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer. Clin Cancer Res 23:5912-5922
Nagaraja, Archana S; Dood, Robert L; Armaiz-Pena, Guillermo et al. (2017) Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2:

Showing the most recent 10 out of 625 publications