PROJECT SUI /11 /IARY (See instructions):
The aim of this proposal is to identify and validate biomarkers that will, for the first time, enable individualization of therapy in ovarian cancer. This proposal will thus include the execution of an innovative phase II clinical trial that will facilitate the validation of novel biomarkers that predict the clinical efficacy of targeted therapies in individual women with ovarian cancer. We will target two biologic processes that we and others have established as playing critical roles in the pathogenesis of epithelial ovarian cancer: (i) activation of the phosphatidylinositide-3-kinase (PISK/AKT/mTOR) pathway ('PISKness'), and (ii) deficient BRCA1/2-mediated homologous recombination (HR) ('BRCAness'). This proposal will build on the successful phase I trial targeting the PISK signaling pathway in ovarian cancer thay we executed in the previous SPORE funding period. It will also build on our new data indicating that somatic mutations and loss of BRCA1 and BRCA2 function are significantly more common than previously thought in ovarian cancer and should predict sensitivity to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) that exhibit synthetic lethality with BRCA1/2 dysfunction. This proposal will bring together: 1. the SouthWest Oncology Group (SWOG) to facilitate execution of the phase II trial, 2. Astra Zeneca to provide access to the novel therapies olaparib (PARPi) and AZD8055 (PISK pathway inhibitor), and 3. Myriad Genetics, Inc.
The specific aims are:
Aim 1 : A. To determine whether 'PISKness'predicts responsiveness to PISK pathway inhibitors in cell lines and ovarian cancer xenografts. B. To determine whether 'PISKness'predicts outcome in ovarian cancer patients treated with surgery and platinum/paclitaxel-based chemotherapy.
Aim 2; A. To determine whether 'BRCAness'predicts responsiveness to PARP inhibitors in cell lines and ovarian cancer xenografts. B. To determine whether """"""""BRCAness"""""""" predicts outcome in ovarian cancer patients treated with surgery and platinum/paclitaxel-based chemotherapy.
Aim S;To determine whether 'PISKness'and 'BRCAness'predict response to targeting the PISK/AKT/mTOR pathway and PARP, respectively, in a phase II ovarian cancer clinical trial.

Public Health Relevance

The successful execution of this study wiil contribute to: 1) the implementation of novel therapies with clinical utility, and 2) progress towards individualization of treatment for women with ovarian cancer. As a result, we expect that the successful execution of this research proposal will lead to improved therapy and outcomes for w/omen with ovarian cancer as well as define paradigms and trial designs that can be applied broadly to increase the rate of successful implementation of targeted therapy in ovarian cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA083639-15
Application #
8731080
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
15
Fiscal Year
2014
Total Cost
Indirect Cost
City
Houston
State
TX
Country
United States
Zip Code
77030
AACR Project GENIE Consortium (2017) AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov 7:818-831
Sans, Marta; Gharpure, Kshipra; Tibshirani, Robert et al. (2017) Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Res 77:2903-2913
Robertson, A Gordon; Shih, Juliann; Yau, Christina et al. (2017) Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell 32:204-220.e15
Yeung, Tsz-Lun; Leung, Cecilia S; Wong, Kwong-Kwok et al. (2017) ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 8:16951-16963
Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K et al. (2017) Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress. Biochem J 474:731-749
Cho, Min Soon; Noh, Kyunghee; Haemmerle, Monika et al. (2017) Role of ADP receptors on platelets in the growth of ovarian cancer. Blood 130:1235-1242
Harjes, U; Bridges, E; Gharpure, K M et al. (2017) Antiangiogenic and tumour inhibitory effects of downregulating tumour endothelial FABP4. Oncogene 36:912-921
Sekihara, Kazumasa; Saitoh, Kaori; Han, Lina et al. (2017) Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget 8:34552-34564
Yang, Wei-Lei; Gentry-Maharaj, Aleksandra; Simmons, Archana et al. (2017) Elevation of TP53 Autoantibody Before CA125 in Preclinical Invasive Epithelial Ovarian Cancer. Clin Cancer Res 23:5912-5922
Nagaraja, Archana S; Dood, Robert L; Armaiz-Pena, Guillermo et al. (2017) Adrenergic-mediated increases in INHBA drive CAF phenotype and collagens. JCI Insight 2:

Showing the most recent 10 out of 625 publications