This Specialized Resource will provide chemical expertise and produce imaging agents that are not commercially available. These agents will be a) rigorously tested so as to conform to strict standards (by being synthesized under standardized conditions in technically adequate ways);b) analyzed according to a standard protocol prior to use;and c) synthesized in sufficient amounts for in vivo use. They will be available to all Project researchers. As it has in the past, this Resource will also conduct its own research in order to further improve synthetic conditions, and to design fluorochromes, sensors, tags, linkers and nanoparticulate carriers.
The specific aims of this Specialized Resource are to synthesize and provide: 1) an array of new fluorochromes, fluorescently labeled reagents, sensors, and coupling reagents;2) nanomaterial based imaging agents;and 3) radiochemistry expertise and novel ''^F-imaging agents. The existence of this Specialized Resource has a number of benefits to the overall Program, these include: a) access to cutting edge synthetic, bioconjugate and analytical chemistry;b) access to radiochemistry;c) access to well validated imaging compounds that are not commercially available;d) capabilities for scaling up the synthesis of novel compounds;and e) access to specific training. By centralizing personnel, resources and supplies, the Chemistry Resource is able to provide these functions extremely efficiently and at a reduced overall cost.

Public Health Relevance

This Chemistry Resource is an integral part of this P50 Program, providing essential compounds that are not commercially available to all Projects and Developmental Projects. This Resource also scales up imaging agents for in vivo use and carries out rigorous quality assurance.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen et al. (2016) Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54
Ghosh, Balaram; Zhao, Wen-Ning; Reis, Surya A et al. (2016) Dissecting structure-activity-relationships of crebinostat: Brain penetrant HDAC inhibitors for neuroepigenetic regulation. Bioorg Med Chem Lett 26:1265-71
Roy, Jeremy; Kim, Bongki; Hill, Eric et al. (2016) Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun 7:10666
Wu, Juwell W; Turcotte, Raphaël; Alt, Clemens et al. (2016) Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Sci Rep 6:24303
Reis, Surya A; Ghosh, Balaram; Hendricks, J Adam et al. (2016) Light-controlled modulation of gene expression by chemical optoepigenetic probes. Nat Chem Biol 12:317-23
Pucci, Ferdinando; Rickelt, Steffen; Newton, Andita P et al. (2016) PF4 Promotes Platelet Production and Lung Cancer Growth. Cell Rep 17:1764-1772
Miller, Miles A; Weissleder, Ralph (2016) Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev :
Vinegoni, Claudio; Dubach, John M; Feruglio, Paolo Fumene et al. (2016) Two-photon Fluorescence Anisotropy Microscopy for Imaging and Direct Measurement of Intracellular Drug Target Engagement. IEEE J Sel Top Quantum Electron 22:
Meimetis, Labros G; Boros, Eszter; Carlson, Jonathan C et al. (2016) Bioorthogonal Fluorophore Linked DFO-Technology Enabling Facile Chelator Quantification and Multimodal Imaging of Antibodies. Bioconjug Chem 27:257-63
Pucci, Ferdinando; Garris, Christopher; Lai, Charles P et al. (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242-6

Showing the most recent 10 out of 309 publications