The overall goal for the Career Development Program (CDP) is to provide broad multidisciplinary training support for two junior faculty per year. CDP trainees must have an outstanding academic track record as well as a desire to explore alternative research directions. The program is also appropriate for trainees who need additional time in a productive scientific environment in order to establish an independent research program in molecular imaging. The program emphasizes the education of basic (PhD) and/or clinical (MD or MD/PhD) scientists in the principles and applications of molecular techniques, to answer basic science or clinical questions through in vivo imaging. Several of the past trainees lead their own research programs in molecular imaging and play key roles in this submission, attesting to the efficacy of this CDP. Effective recruitment mechanisms, including several for underrepresented minorities, are in place. The program consists of multidisciplinary training by faculty mentors as well as lectures on individual research projects, the design of hypothesis-driven research, journal publication, and grant writing. There are a total of 27 teaching faculty members, all of whom receive NIH funding and all of whom have expressed significant interest in teaching. Individual faculty were selected based on their: a) research expertise and proven track record in mentoring, b) proven abilities to engage in collaborations, c) commitment to interdisciplinary work, d) national reputation, e) proven ability to attract research support, and e) established record of didactic and research training in the focus areas of the program.
The specific aims of the program are to 1) recruit two outstanding junior faculty per year from a larger applicant pool;2) provide broad training and research support to faculty trainees;and 3) provide continued mentoring and broad-based training in molecular imaging at all skill levels in order to promote excellence in science and medicine.

Public Health Relevance

The future development and translation of molecular imaging into clinically useful tools is critically dependent on the next generation of scientists, who must be well trained in all aspects of imaging research.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA086355-15
Application #
8693595
Study Section
Special Emphasis Panel (ZCA1-SRLB-9)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
15
Fiscal Year
2014
Total Cost
$32,695
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Dubach, J Matthew; Kim, Eunha; Yang, Katherine et al. (2017) Quantitating drug-target engagement in single cells in vitro and in vivo. Nat Chem Biol 13:168-173
Vinegoni, Claudio; Fumene Feruglio, Paolo; Brand, Christian et al. (2017) Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 12:1472-1497
Iaconelli, Jonathan; Lalonde, Jasmin; Watmuff, Bradley et al. (2017) Lysine Deacetylation by HDAC6 Regulates the Kinase Activity of AKT in Human Neural Progenitor Cells. ACS Chem Biol 12:2139-2148
Arlauckas, Sean P; Garris, Christopher S; Kohler, Rainer H et al. (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 9:
Miller, Miles A; Weissleder, Ralph (2017) Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 113:61-86
Engblom, Camilla; Pfirschke, Christina; Zilionis, Rapolas et al. (2017) Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358:
Miller, Miles A; Askevold, Bjorn; Mikula, Hannes et al. (2017) Nano-palladium is a cellular catalyst for in vivo chemistry. Nat Commun 8:15906
Pucci, Ferdinando; Garris, Christopher; Lai, Charles P et al. (2016) SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352:242-6
Roy, Jeremy; Kim, Bongki; Hill, Eric et al. (2016) Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun 7:10666
Pfirschke, Christina; Engblom, Camilla; Rickelt, Steffen et al. (2016) Immunogenic Chemotherapy Sensitizes Tumors to Checkpoint Blockade Therapy. Immunity 44:343-54

Showing the most recent 10 out of 316 publications