The objectives of the Developmental Projects Program are to ensure a continual renewal of high-quality scientific endeavors in the DF/HCC Prostate Cancer SPORE and to fund efforts that will complement or enhance the overall quality of the DF/HCC Prostate Cancer SPORE. In general, the Developmental Projects Program has funded established investigators. Based on our review, we will be mindful of including more junior investigators. This Program will rely on the infrastructure created by the Administrative, Evaluation, and Planning Core (Core A) to: 1. Solicit applications and/or identify novel prostate cancer research projects 2. Evaluate these projects for funding 3. Fund innovative developmental projects 4. Re-evaluate projects for possible transition into full project status 5. Evaluate the success of the program

Public Health Relevance

The Developmental Research Program of the DF/HCC Prostate Cancel- Program is intended to attract established investigators to the field of prostate cancer in order to develop new ideas of investigation which may change the field or be developed into full projects in the SPORE.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA090381-11A1
Application #
8554565
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
2001-04-01
Project End
2018-06-30
Budget Start
2013-09-23
Budget End
2014-06-30
Support Year
11
Fiscal Year
2013
Total Cost
$168,522
Indirect Cost
$86,703
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Preston, Mark A; Batista, Julie L; Wilson, Kathryn M et al. (2016) Baseline Prostate-Specific Antigen Levels in Midlife Predict Lethal Prostate Cancer. J Clin Oncol 34:2705-11
Sinnott, Jennifer A; Peisch, Sam; Tyekucheva, Svitlana et al. (2016) Prognostic Utility of a New mRNA Expression Signature of Gleason Score. Clin Cancer Res :
Yang, Meng; Zu, Ke; Mucci, Lorelei A et al. (2016) Vascular morphology differentiates prostate cancer mortality risk among men with higher Gleason grade. Cancer Causes Control 27:1043-7
Thorgeirsson, Tryggvi; Jordahl, Kristina M; Flavin, Richard et al. (2016) Intracellular location of BRCA2 protein expression and prostate cancer progression in the Swedish Watchful Waiting Cohort. Carcinogenesis 37:262-8
Kelly, Rachel S; Vander Heiden, Matthew G; Giovannucci, Edward et al. (2016) Metabolomic Biomarkers of Prostate Cancer: Prediction, Diagnosis, Progression, Prognosis, and Recurrence. Cancer Epidemiol Biomarkers Prev 25:887-906
Gerrin, Sean J; Sowalsky, Adam G; Balk, Steven P et al. (2016) Mutation Profiling Indicates High Grade Prostatic Intraepithelial Neoplasia as Distant Precursors of Adjacent Invasive Prostatic Adenocarcinoma. Prostate 76:1227-36
Liu, Xiaming; Han, Weiwei; Gulla, Sarah et al. (2016) Protein phosphatase 1 suppresses androgen receptor ubiquitylation and degradation. Oncotarget 7:1754-64
Ahearn, Thomas U; Tchrakian, Nairi; Wilson, Kathryn M et al. (2016) Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression. J Clin Endocrinol Metab 101:2520-7
Li, Zhenfei; Alyamani, Mohammad; Li, Jianneng et al. (2016) Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy. Nature 533:547-51
Xie, Wanling; Yang, Ming; Chan, June et al. (2016) Association of genetic variations of selenoprotein genes, plasma selenium levels, and prostate cancer aggressiveness at diagnosis. Prostate 76:691-9

Showing the most recent 10 out of 217 publications