Men with advanced prostate cancer are treated with hormonal therapy, which leads to an initial response that inevitably recurs in the lethal form of the disease termed castration-resistant prostate cancer (CRPC). While the androgen-signaling axis is the predominant target for therapy in the field, pathways promoting survival and proliferation that are independent of the AR axis need to be identified for potent combinatorial therapeutic strategies. Importantly, therapies aimed at depleting stem/progenitor cell mechanisms, such as self-renewal, have not been adequately explored. We have recently discovered that the stem cell marker Trop2 is a new regulator of self-renewal and proliferation in the prostate and is strongly associated with a castration-resistant state. We have defined a mechanism of action for Trop2 through regulated proteolysis, leading to release of an intracellular domain, similar to activation of Notch. As Trop2 marks and regulates stem cells and is associated with castration-resistance, we propose that blocking Trop2 proteolysis/ activation will inhibit stem-like capacities including self-renewal and proliferation and prevent disease-recurrence. In this proposal, we will utilize clinical specimens, primary regenerated tumors and established cancer xenografts to evaluate Trop2 proteolytic processing as a therapeutic target for future clinical trials in prostate cancer. The goal of AIM 1 is to validate Trop2 as a target in clinical prostate cancer specimens by measuring Trop2, its proteolytic products and downstream effectors in prostate cancer subjects. The goal of AIM 2 is to determine the role of Trop2 in human prostate self-renewal and tumorigenesis, using a dissociated cell tissue recombination strategy to evaluate Trop2+ cells and Trop2 itself in genetically defined primary tumors in vivo. The goal of AIM 3 is to investigate mechanisms to target Trop2 in pre-clinical studies. These experiments will utilize genetic and chemical approaches to establish the role of Trop2 regulated proteolysis, and assess monoclonal antibodies for their ability to interfere with Trop2 processing and tumor growth.

Public Health Relevance

This proposal will evaluate a new target, Trop2, in advanced prostate cancer and establish the feasibility of inhibiting Trop2 in future clinical trials. Blocking Trop2 and its associated growth-promoting effects may be an effective strategy to treat patients with advanced disease and prevent recurrence in the form of the lethal castration-resistant prostate cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Henning, Susanne M; Wang, Piwen; Said, Jonathan W et al. (2015) Randomized clinical trial of brewed green and black tea in men with prostate cancer prior to prostatectomy. Prostate 75:550-9
Apostolova, Liana G; Di, Li Jie; Duffy, Erin L et al. (2014) Risk factors for behavioral abnormalities in mild cognitive impairment and mild Alzheimer's disease. Dement Geriatr Cogn Disord 37:315-26
Li, Z; Tseng, C-H; Li, Q et al. (2014) Clinical efficacy of a medically supervised outpatient high-protein, low-calorie diet program is equivalent in prediabetic, diabetic and normoglycemic obese patients. Nutr Diabetes 4:e105
Lin, Millicent; Chen, Jie-Fu; Lu, Yi-Tsung et al. (2014) Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc Chem Res 47:2941-50
Keto, Christopher J; Aronson, William J; Terris, Martha K et al. (2014) Detectable prostate-specific antigen Nadir during androgen-deprivation therapy predicts adverse prostate cancer-specific outcomes: results from the SEARCH database. Eur Urol 65:620-7
Hsi, Eric D; Said, Jonathan; Macon, William R et al. (2014) Diagnostic accuracy of a defined immunophenotypic and molecular genetic approach for peripheral T/NK-cell lymphomas. A North American PTCL study group project. Am J Surg Pathol 38:768-75
Wu, Anna M (2014) Engineered antibodies for molecular imaging of cancer. Methods 65:139-47
Garcia, Alejandro J; Ruscetti, Marcus; Arenzana, Teresita L et al. (2014) Pten null prostate epithelium promotes localized myeloid-derived suppressor cell expansion and immune suppression during tumor initiation and progression. Mol Cell Biol 34:2017-28
Chamie, Karim; Sonn, Geoffrey A; Finley, David S et al. (2014) The role of magnetic resonance imaging in delineating clinically significant prostate cancer. Urology 83:369-75
Galet, Colette; Gollapudi, Kiran; Stepanian, Sevan et al. (2014) Effect of a low-fat fish oil diet on proinflammatory eicosanoids and cell-cycle progression score in men undergoing radical prostatectomy. Cancer Prev Res (Phila) 7:97-104

Showing the most recent 10 out of 189 publications