The purpose of the Imaging Shared Resource Core is to support innovative, multidisciplinary, translational research through the provision and support of state-of-the-art molecular, functional, and anatomical imaging. The Imaging Core works closely with UCLA Prostate SPORE investigators to implement and integrate biological imaging in their preclinical and clinical studies in order to develop key biological information to foster the optimal detection, treatment, and overall management of prostate cancer. The Imaging Core provides access to a diverse spectrum of preclinical imaging modalities, including microPET, microCT, optical (bioluminescence and fluorescence) and digital whole body autoradiography. The clinical component of the Imaging Core provides access to multiparametric MRI and MR Spectroscopy.and PET for noninvasive imaging of physiology and metabolism. In addition, targeted biopsies can be conducted using MRI/US coregistration using the Artemis system, or through CT-guided biopsy by interventional radiology. The role of the Imaging Shared Resource Core is to aid investigators in experimental design, develop standardized and quantitative approaches to image interpretation, and to solve technical hurdles. The Imaging Core also works closely with the Pathology core for targeted tissue acquisition. Centralization of these activities in a Shared Resource ensures a uniform approach and implementation across the clinical components of the SPORE projects and is critical to their success.

Public Health Relevance

The Imaging Shared Resource Core provides state-of-the-art anatomic and biological imaging expertise and services to the Prostate SPORE projects. The Imaging Core supports preclinical studies on mouse models of prostate cancer, and facilitates innovative clinical trials with prostate cancer patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Chen, Changhao; Cai, Qingqing; He, Wang et al. (2016) An NKX3.1 binding site polymorphism in the l-plastin promoter leads to differential gene expression in human prostate cancer. Int J Cancer 138:74-86
Yan, Yunwen; Li, Zhen; Xu, Xiang et al. (2016) All-trans retinoic acids induce differentiation and sensitize a radioresistant breast cancer cells to chemotherapy. BMC Complement Altern Med 16:113
Hurley, Paula J; Sundi, Debasish; Shinder, Brian et al. (2016) Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clin Cancer Res 22:448-58
Faltermeier, Claire M; Drake, Justin M; Clark, Peter M et al. (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A 113:E172-81
Liang, Pei; Henning, Susanne M; Schokrpur, Shiruyeh et al. (2016) Effect of Dietary Omega-3 Fatty Acids on Tumor-Associated Macrophages and Prostate Cancer Progression. Prostate 76:1293-302
Lee, John K; Phillips, John W; Smith, Bryan A et al. (2016) N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. Cancer Cell 29:536-47
Wang, Piwen; Henning, Susanne M; Magyar, Clara E et al. (2016) Green tea and quercetin sensitize PC-3 xenograft prostate tumors to docetaxel chemotherapy. J Exp Clin Cancer Res 35:73
Hu, Yangyang; Dong, Xuecheng; Wang, Guangchun et al. (2016) Five-Year Follow-Up Study of Transurethral Plasmakinetic Resection of the Prostate for Benign Prostatic Hyperplasia. J Endourol 30:97-101
Park, Jung Wook; Lee, John K; Phillips, John W et al. (2016) Prostate epithelial cell of origin determines cancer differentiation state in an organoid transformation assay. Proc Natl Acad Sci U S A 113:4482-7
Stoyanova, Tanya; Riedinger, Mireille; Lin, Shu et al. (2016) Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc Natl Acad Sci U S A 113:E6457-E6466

Showing the most recent 10 out of 279 publications