The Biostatistics and Bioinformatics Core, Core III, will facilitate translational research in prostate cancer, by providing UCLA investigators and their colleagues with state of the art biostatistical, bioinformatics, data management and clinical trials support. The core provides a centralized network of biostatistics/bioinformatics support and data management for prostate cancer researchers at UCLA and their collaborators. The overall goal of the Core is to provide statistical and data management support to basic and clinical investigators in the SPORE. This includes provision of power analyses for planning of preclinical and clinical studies and statistical analysis of all completed studies prior to publication. The Core also provides analytical services for all genomics research, including sequencing and gene expression arrays within the SPORE. In addition to these statistical services, the Core plays a central role in the management of the UCLA Prostate Cancer SPORE clinical database. The Core had designed and manages the web-based Prostate SPORE clinical database. Continual improvements to the database have been made to facilitate data input and workflow, as well as to provide a seamless environment for statistical and other inquiries. The database is linked to the biospecimen repository, as well as to the tissue arrays managed by the Pathology Core. The Core aims to provide comprehensive statistical consultation and analysis to the individual projects to SPORE investigators. This will also include education in the use of statistical software, preparation of manuscripts, and development and submission of new grant applications.
It aims to provide a facility and computational leadership to design and carry out projects using high-dimensional technologies including tissue array, microarray gene expression, flow cytometry. Software and up-to-date statistical methodology will also be provided.
It aims to maintain and develop a central data repository and provide data management/quality control activities for all SPORE projects and cores. This function will include development and application of additional data management and statistical programming tools.

Public Health Relevance

An important reason for having a core dedicated for statistical support is the complexity of the statistical issues involved in the proposed SPORE research. When standard statistical methodology does not apply, new statistical and bioinformatics methods must be explored. Effective data management and reporting are a crucial precursor to high quality and reproducible statistical analyses and for sharing data with the research community

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA092131-12
Application #
8760364
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$176,382
Indirect Cost
$75,313
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Mitra, Mithun; Lee, Ha Neul; Coller, Hilary A (2018) Determining Genome-wide Transcript Decay Rates in Proliferating and Quiescent Human Fibroblasts. J Vis Exp :
Zou, Yongkang; Qi, Zhi; Guo, Weilong et al. (2018) Cotargeting the Cell-Intrinsic and Microenvironment Pathways of Prostate Cancer by PI3K?/?/? Inhibitor BAY1082439. Mol Cancer Ther 17:2091-2099
Henning, Susanne M; Galet, Colette; Gollapudi, Kiran et al. (2018) Phase II prospective randomized trial of weight loss prior to radical prostatectomy. Prostate Cancer Prostatic Dis 21:212-220
Miller, Eric T; Salmasi, Amirali; Reiter, Robert E (2018) Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 8:
Navarro, H├ęctor I; Goldstein, Andrew S (2018) HoxB13 mediates AR-V7 activity in prostate cancer. Proc Natl Acad Sci U S A 115:6528-6529
Mitra, Mithun; Ho, Linda D; Coller, Hilary A (2018) An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. Methods Mol Biol 1686:27-47
Li, Jiayun; Speier, William; Ho, King Chung et al. (2018) An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Comput Med Imaging Graph 69:125-133
Kang, Jung J; Reiter, Robert E; Kummer, Nicolas et al. (2018) Wrong to be Right: Margin Laterality is an Independent Predictor of Biochemical Failure After Radical Prostatectomy. Am J Clin Oncol 41:1-5
Lee, Ha Neul; Mitra, Mithun; Bosompra, Oye et al. (2018) RECK isoforms have opposing effects on cell migration. Mol Biol Cell 29:1825-1838
Aggarwal, Rahul; Huang, Jiaoti; Alumkal, Joshi J et al. (2018) Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 36:2492-2503

Showing the most recent 10 out of 339 publications