Melanoma has the fastest growing incidence among all cancers in the United States;researchers estimate there were over 62,000 new melanoma cases in 2008. Most patients with melanoma present with early stage disease and are cured with surgery alone. However, despite their overall good outcome, more than 15% of melanoma patients will suffer a recurrence. Standard clinical features (tumor thickness, ulceration, sentinel lymph node status) cannot completely predict which patients will recur. For those who do recur, current therapies are effective in only a minority. Thus, identifying more effective biologic markers to select high-risk patients for adjuvant therapies, identify those who will respond to treatment, elucidate mechanisms of recurrence, and suggest novel therapies is a necessity. One important way to identify relevant biologic markers is to examine the relationship of human genetic variation (genetic polymorphisms) to disease recurrence and progression, and an important potential mechanism regulating melanoma recurrence and progression is variation in the immune and inflammatory response to melanoma. Our recent investigations have identified specific polymorphisms in human leukocyte antigen (HLA) class II and transforming growth factor-iSl (TGF-i81) genes as markers of prognosis in early-stage melanoma patients. HLA class II polymorphisms can regulate melanoma immune responses by differential binding of peptide antigens, whereas TGF-|31 polymorphisms can regulate tumor growth and metastasis by differential expression of TGF-jSI and immunomodulation. We hypothesize that genetic polymorphisms in these and other immune and inflammatory genes influence host response to melanoma and thereby melanoma progression. We propose a coordinated investigation of our most promising and mechanistically related polymorphisms in a large cohort of patients with melanoma (Aim 1) together with a genome-wide analysis to identify candidate loci most strongly linked with melanoma progression (Aim 2). We will use this information to develop an integrated and iterative risk model of melanoma progression incorporating clinical, histopathologic, serologic, and genetic information from more than 2000 patients with melanoma (Aim 3).

Public Health Relevance

Determination of the most important genetic polymorphisms influencing melanoma progression will lead to more accurate identification of high-risk patients for adjuvant therapies, more accurate selection of systemic therapies for patients who have recurrences, and suggest novel treatment strategies.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing et al. (2015) Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy. Clin Cancer Res 21:611-21
Fang, Shenying; Wang, Yuling; Chun, Yun Shin et al. (2015) The relationship between blood IL-12p40 level and melanoma progression. Int J Cancer 136:1874-80
Siroy, Alan E; Boland, Genevieve M; Milton, DenĂ¡i R et al. (2015) Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol 135:508-15
Chattopadhyay, Chandrani; Grimm, Elizabeth A; Woodman, Scott E (2014) Simultaneous inhibition of the HGF/MET and Erk1/2 pathways affect uveal melanoma cell growth and migration. PLoS One 9:e83957
Sim, Geok Choo; Chacon, Jessica; Haymaker, Cara et al. (2014) Tumor-infiltrating lymphocyte therapy for melanoma: rationale and issues for further clinical development. BioDrugs 28:421-37
Rees, Elliott; Walters, James T R; Georgieva, Lyudmila et al. (2014) Analysis of copy number variations at 15 schizophrenia-associated loci. Br J Psychiatry 204:108-14
Lopez-Rivera, Esther; Jayaraman, Padmini; Parikh, Falguni et al. (2014) Inducible nitric oxide synthase drives mTOR pathway activation and proliferation of human melanoma by reversible nitrosylation of TSC2. Cancer Res 74:1067-78
Boraska, V; Franklin, C S; Floyd, J A B et al. (2014) A genome-wide association study of anorexia nervosa. Mol Psychiatry 19:1085-94
Singh, Manisha; Khong, Hiep; Dai, Zhimin et al. (2014) Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J Immunol 193:4722-31
Wang, Yun; Hu, Shougang; Gabisi Jr, Abdul M et al. (2014) Developing an irreversible inhibitor of human DDAH-1, an enzyme upregulated in melanoma. ChemMedChem 9:792-7

Showing the most recent 10 out of 144 publications