Effective therapies for CRC still remain a critical unmet medical need. One of the most important drivers of CRC is K-Ras, which is mutated in 40% of human CRCs. Indeed, Ras proteins play essential roles as molecular switches, controlling cell proliferation, growth, differentiation, and apoptosis. Deregulation of the Ras signaling pathway by activating mutations, overexpression, or upstream activation is common in many human tumors. Thus, K-Ras represents a highly validated and important target for CRC and a wide variety of other cancers. Although a number of different approaches have been attempted to target upstream or downstream proteins in the K-Ras signaling pathway, it would be ideal to target K-Ras itself However, KRas is considered to be a poor drug target. In order to test whether K-Ras could be druggable with a small molecule, we cloned, expressed, isotopically labeled, and purified K-Ras (G12D) and conducted a fragment-based screen on GDP- and GTP-bound K-Ras using NMR. In these screens we identified over 100 small molecules that bind to K-Ras, suggesting that K-Ras may be a druggable target. In addition, we obtained several X-ray crystal structures of K-Ras bound to the hits identified in the screen, which we are currently using to guide the synthesis of K-Ras inhibitors. We propose to discover small molecules that potently bind to K-Ras, inhibit its functions, and are highly efficacious against in vivo CRC tumor models with the goal of discovering a compound that is suitable for entry into a CRC clinical trial. We hypothesize that a K-Ras inhibitor will be highly effective for treating CRC patients.
Aim 1. Generate lead compounds that bind K-RAS tightly (nM) from our fragment-based screens and recently determined three-dimensional structures of K-RAS/inhibitor complexes using iterative structure-based design.
Aim 2. Optimize lead K-RAS binders for their K-RAS inhibitory effects in biochemical assays and their cell-based activities against colon cancer cells.
Aim 3. Prioritize K-RAS inhibitors with excellent pharmaceutical properties that are efficacious in vivo using a new stem cell-derived, tamoxifen-inducible Cre driver (Lrig1-CreERT2) mouse to activate mutant KRAS in the mouse colon. Select a compound that is suitable for a clinical trial in colon cancer by the end of the granting period.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Jin, Ming; Roth, Rachel; Rock, Jonathan B et al. (2015) The impact of tumor deposits on colonic adenocarcinoma AJCC TNM staging and outcome. Am J Surg Pathol 39:109-15
Johnson, Adam; Wright, Jesse P; Zhao, Zhiguo et al. (2015) Cadherin 17 is frequently expressed by 'sclerosing variant' pancreatic neuroendocrine tumour. Histopathology 66:225-33
Peng, DunFa; Hu, TianLing; Soutto, Mohammed et al. (2014) Glutathione peroxidase 7 has potential tumour suppressor functions that are silenced by location-specific methylation in oesophageal adenocarcinoma. Gut 63:540-51
Tripathi, Manish K; Deane, Natasha G; Zhu, Jing et al. (2014) Nuclear factor of activated T-cell activity is associated with metastatic capacity in colon cancer. Cancer Res 74:6947-57
Powell, Anne E; Vlacich, Gregory; Zhao, Zhen-Yang et al. (2014) Inducible loss of one Apc allele in Lrig1-expressing progenitor cells results in multiple distal colonic tumors with features of familial adenomatous polyposis. Am J Physiol Gastrointest Liver Physiol 307:G16-23
Hight, Matthew R; Cheung, Yiu-Yin; Nickels, Michael L et al. (2014) A peptide-based positron emission tomography probe for in vivo detection of caspase activity in apoptotic cells. Clin Cancer Res 20:2126-35
Zhang, Bing; Wang, Jing; Wang, Xiaojing et al. (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513:382-7
Mitra, Ramkrishna; Edmonds, Mick D; Sun, Jingchun et al. (2014) Reproducible combinatorial regulatory networks elucidate novel oncogenic microRNAs in non-small cell lung cancer. RNA 20:1356-68
Sekhar, Konjeti R; Benamar, Mouadh; Venkateswaran, Amudhan et al. (2014) Targeting nucleophosmin 1 represents a rational strategy for radiation sensitization. Int J Radiat Oncol Biol Phys 89:1106-14
Sehdev, Vikas; Katsha, Ahmed; Arras, Janet et al. (2014) HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clin Cancer Res 20:76-86

Showing the most recent 10 out of 239 publications