Effective therapies for CRC still remain a critical unmet medical need. One of the most important drivers of CRC is K-Ras, which is mutated in 40% of human CRCs. Indeed, Ras proteins play essential roles as molecular switches, controlling cell proliferation, growth, differentiation, and apoptosis. Deregulation of the Ras signaling pathway by activating mutations, overexpression, or upstream activation is common in many human tumors. Thus, K-Ras represents a highly validated and important target for CRC and a wide variety of other cancers. Although a number of different approaches have been attempted to target upstream or downstream proteins in the K-Ras signaling pathway, it would be ideal to target K-Ras itself However, KRas is considered to be a poor drug target. In order to test whether K-Ras could be druggable with a small molecule, we cloned, expressed, isotopically labeled, and purified K-Ras (G12D) and conducted a fragment-based screen on GDP- and GTP-bound K-Ras using NMR. In these screens we identified over 100 small molecules that bind to K-Ras, suggesting that K-Ras may be a druggable target. In addition, we obtained several X-ray crystal structures of K-Ras bound to the hits identified in the screen, which we are currently using to guide the synthesis of K-Ras inhibitors. We propose to discover small molecules that potently bind to K-Ras, inhibit its functions, and are highly efficacious against in vivo CRC tumor models with the goal of discovering a compound that is suitable for entry into a CRC clinical trial. We hypothesize that a K-Ras inhibitor will be highly effective for treating CRC patients.
Aim 1. Generate lead compounds that bind K-RAS tightly (nM) from our fragment-based screens and recently determined three-dimensional structures of K-RAS/inhibitor complexes using iterative structure-based design.
Aim 2. Optimize lead K-RAS binders for their K-RAS inhibitory effects in biochemical assays and their cell-based activities against colon cancer cells.
Aim 3. Prioritize K-RAS inhibitors with excellent pharmaceutical properties that are efficacious in vivo using a new stem cell-derived, tamoxifen-inducible Cre driver (Lrig1-CreERT2) mouse to activate mutant KRAS in the mouse colon. Select a compound that is suitable for a clinical trial in colon cancer by the end of the granting period.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA095103-13
Application #
8726907
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
13
Fiscal Year
2014
Total Cost
$109,873
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Hinger, Scott A; Cha, Diana J; Franklin, Jeffrey L et al. (2018) Diverse Long RNAs Are Differentially Sorted into Extracellular Vesicles Secreted by Colorectal Cancer Cells. Cell Rep 25:715-725.e4
Weigl, Korbinian; Thomsen, Hauke; Balavarca, Yesilda et al. (2018) Genetic Risk Score Is Associated With Prevalence of Advanced Neoplasms in a Colorectal Cancer Screening Population. Gastroenterology 155:88-98.e10
Schulte, Michael L; Fu, Allie; Zhao, Ping et al. (2018) Pharmacological blockade of ASCT2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat Med 24:194-202
Zhao, Shilin; Li, Chung-I; Guo, Yan et al. (2018) RnaSeqSampleSize: real data based sample size estimation for RNA sequencing. BMC Bioinformatics 19:191
Wang, Yang; Vnencak-Jones, Cindy L; Cates, Justin M et al. (2018) Deciphering Elevated Microsatellite Alterations at Selected Tetra/Pentanucleotide Repeats, Microsatellite Instability, and Loss of Heterozygosity in Colorectal Cancers. J Mol Diagn 20:366-372
Banerjee, Amrita; McKinley, Eliot T; von Moltke, Jakob et al. (2018) Interpreting heterogeneity in intestinal tuft cell structure and function. J Clin Invest 128:1711-1719
Herring, Charles A; Chen, Bob; McKinley, Eliot T et al. (2018) Single-Cell Computational Strategies for Lineage Reconstruction in Tissue Systems. Cell Mol Gastroenterol Hepatol 5:539-548
Choi, Eunyoung; Lantz, Tyler L; Vlacich, Gregory et al. (2018) Lrig1+ gastric isthmal progenitor cells restore normal gastric lineage cells during damage recovery in adult mouse stomach. Gut 67:1595-1605
Singh, Kshipra; Coburn, Lori A; Asim, Mohammad et al. (2018) Ornithine Decarboxylase in Macrophages Exacerbates Colitis and Promotes Colitis-Associated Colon Carcinogenesis by Impairing M1 Immune Responses. Cancer Res 78:4303-4315
Idrees, Kamran; Padmanabhan, Chandrasekhar; Liu, Eric et al. (2018) Frequent BRAF mutations suggest a novel oncogenic driver in colonic neuroendocrine carcinoma. J Surg Oncol 117:284-289

Showing the most recent 10 out of 447 publications