Our studies and those of others have shown that for many normal cell types, stressors that produce DNA damage (such as radiation and chemotherapy) induce a response that includes the robust secretion of specific extracellular effector proteins that we term the DNA Damage Secretory Program (DDSP). The DDSP includes a spectrum of autocrine and paracrine-acting proinflammatory cytokines, proteases and mitogenic growth factors that can promote tumor growth, inhibit cellular differentiation, and enhance angiogenesis. Further, constituents derived from damaged fibroblasts can also induce an epithelial to mesenchymal transition (EMT) in carcinoma cells accompanied by enhanced resistance to chemotherapeutics. Thus, the reaction of any tumor cell to genotoxic stress may depend on both intrinsic damage response capabilities and context dictated by the amalgam of cellular interactions in the tumor microenvironment (TME). In this proposal, we will conduct pre-clinical and clinical trials designed to test the hypothesis that inhibiting components of the microenvironment-derived DNA damage secretory program will enhance the responses of prostate tumors to commonly used genotoxic cancer treatments. We propose two aims:
Aim 1 : To evaluate the effects of inhibiting key regulators and effectors of the microenvironment DNA Damage Secretory Program on therapy responses in preclinical models of prostate cancer. Rationale: defining convergent and divergent influences of master regulators and specific effectors of the microenvironment DDSP will inform pharmacological strategies to maximally inhibit the DDSP, reduce side-effects, and improve therapy responses.
Aim 2 : To conduct a Phase l-II trial evaluating the clinical effect of inhibiting master regulators and specific effectors of the DNA Damage Secretory Program in augmenting genotoxic chemotherapy in men with metastatic CRPC. Rationale: metastatic prostate cancer is essentially incurable. Augmenting chemotherapy responses by suppressing microenvironment resistance mechanisms has the potential to improve therapeutic outcomes produced by commonly used genotoxic chemotherapy.

Public Health Relevance

Metastatic prostate carcinoma is a disease with high lethality, attributable in part to the rapid development of resistance to anti-neoplastic drugs. The successful completion of our studies may alter current concepts of treatment resistance, both to genotoxic and to pathway directed therapeutics, by shifting the emphasis from molecular alterations intrinsic to tumor cells (rare, clonally-selected events) to a context-dependent (genotoxic damage) microenvironment influence on tumor cell phenotypes.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Fred Hutchinson Cancer Research Center
United States
Zip Code
Kuo, Kevin F; Hunter-Merrill, Rachel; Gulati, Roman et al. (2015) Relationships between times to testosterone and prostate-specific antigen rises during the first off-treatment interval of intermittent androgen deprivation are prognostic for castration resistance in men with nonmetastatic prostate cancer. Clin Genitourin Cancer 13:6-Oct
True, Lawrence D (2014) Methodological requirements for valid tissue-based biomarker studies that can be used in clinical practice. Virchows Arch 464:257-63
Lam, Hung-Ming; Vessella, Robert L; Morrissey, Colm (2014) The role of the microenvironment-dormant prostate disseminated tumor cells in the bone marrow. Drug Discov Today Technol 11:41-7
Montgomery, Bruce; Cheng, Heather H; Drechsler, James et al. (2014) Glucocorticoids and prostate cancer treatment: friend or foe? Asian J Androl 16:354-8
Sprenger, Cynthia C T; Plymate, Stephen R (2014) The link between androgen receptor splice variants and castration-resistant prostate cancer. Horm Cancer 5:207-17
Tarnow, Carolin; Engels, GĂ©raldine; Arendt, Annika et al. (2014) TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol 88:4744-51
O'Hurley, Gillian; Prencipe, Maria; Lundon, Dara et al. (2014) The analysis of serum response factor expression in bone and soft tissue prostate cancer metastases. Prostate 74:306-13
Barnett, Christine M; Heinrich, Michael C; Lim, Jeong et al. (2014) Genetic profiling to determine risk of relapse-free survival in high-risk localized prostate cancer. Clin Cancer Res 20:1306-12
Mostaghel, Elahe A; Plymate, Stephen R; Montgomery, Bruce (2014) Molecular pathways: targeting resistance in the androgen receptor for therapeutic benefit. Clin Cancer Res 20:791-8
Chéry, Lisly; Lam, Hung-Ming; Coleman, Ilsa et al. (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939-51

Showing the most recent 10 out of 227 publications