Our studies and those of others have shown that for many normal cell types, stressors that produce DNA damage (such as radiation and chemotherapy) induce a response that includes the robust secretion of specific extracellular effector proteins that we term the DNA Damage Secretory Program (DDSP). The DDSP includes a spectrum of autocrine and paracrine-acting proinflammatory cytokines, proteases and mitogenic growth factors that can promote tumor growth, inhibit cellular differentiation, and enhance angiogenesis. Further, constituents derived from damaged fibroblasts can also induce an epithelial to mesenchymal transition (EMT) in carcinoma cells accompanied by enhanced resistance to chemotherapeutics. Thus, the reaction of any tumor cell to genotoxic stress may depend on both intrinsic damage response capabilities and context dictated by the amalgam of cellular interactions in the tumor microenvironment (TME). In this proposal, we will conduct pre-clinical and clinical trials designed to test the hypothesis that inhibiting components of the microenvironment-derived DNA damage secretory program will enhance the responses of prostate tumors to commonly used genotoxic cancer treatments. We propose two aims:
Aim 1 : To evaluate the effects of inhibiting key regulators and effectors of the microenvironment DNA Damage Secretory Program on therapy responses in preclinical models of prostate cancer. Rationale: defining convergent and divergent influences of master regulators and specific effectors of the microenvironment DDSP will inform pharmacological strategies to maximally inhibit the DDSP, reduce side-effects, and improve therapy responses.
Aim 2 : To conduct a Phase l-II trial evaluating the clinical effect of inhibiting master regulators and specific effectors of the DNA Damage Secretory Program in augmenting genotoxic chemotherapy in men with metastatic CRPC. Rationale: metastatic prostate cancer is essentially incurable. Augmenting chemotherapy responses by suppressing microenvironment resistance mechanisms has the potential to improve therapeutic outcomes produced by commonly used genotoxic chemotherapy.

Public Health Relevance

Metastatic prostate carcinoma is a disease with high lethality, attributable in part to the rapid development of resistance to anti-neoplastic drugs. The successful completion of our studies may alter current concepts of treatment resistance, both to genotoxic and to pathway directed therapeutics, by shifting the emphasis from molecular alterations intrinsic to tumor cells (rare, clonally-selected events) to a context-dependent (genotoxic damage) microenvironment influence on tumor cell phenotypes.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA097186-11A1
Application #
8555014
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Project Start
2002-09-19
Project End
2018-08-31
Budget Start
2013-09-17
Budget End
2014-08-31
Support Year
11
Fiscal Year
2013
Total Cost
$203,789
Indirect Cost
$68,258
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Pollan, Sara G; Huang, Fangjin; Sperger, Jamie M et al. (2018) Regulation of inside-out ?1-integrin activation by CDCP1. Oncogene 37:2817-2836
Wu, Yi-Mi; Cie?lik, Marcin; Lonigro, Robert J et al. (2018) Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 173:1770-1782.e14
Schweizer, Michael T; Hancock, Michael L; Getzenberg, Robert H et al. (2018) Hormone levels following surgical and medical castration: defining optimal androgen suppression. Asian J Androl 20:405-406
Yan, Qingxiang; Bantis, Leonidas E; Stanford, Janet L et al. (2018) Combining multiple biomarkers linearly to maximize the partial area under the ROC curve. Stat Med 37:627-642
Lam, Hung-Ming; Corey, Eva (2018) Supraphysiological Testosterone Therapy as Treatment for Castration-Resistant Prostate Cancer. Front Oncol 8:167
Lam, Hung-Ming; Nguyen, Holly M; Corey, Eva (2018) Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods Mol Biol 1786:1-27
Schenk, Jeannette M; Song, Xiaoling; Morrissey, Colm et al. (2018) Plasma Fatty Acids as Surrogate for Prostate Levels. Nutr Cancer 70:45-50
Beshiri, Michael L; Tice, Caitlin M; Tran, Crystal et al. (2018) A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 24:4332-4345
Das, Lipsa; Gard, Jaime M C; Prekeris, Rytis et al. (2018) Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Mol Cancer Res 16:1319-1331
Dai, James Y; Wang, Bo; Wang, Xiaoyu et al. (2018) Vigorous physical activity is associated with metastatic-lethal progression in prostate cancer and differential tumor DNA methylation in the CRACR2A gene. Cancer Epidemiol Biomarkers Prev :

Showing the most recent 10 out of 400 publications