Despite the introduction of new AR pathway inhibitors such as abiraterone and MDV3100, clinical responses are transitory and many patients do not respond, demonstrating the importance of ligand and AR-independent mechanisms of PCa progression. This proposal evaluates the novel hypothesis that the chromatin modifying enzyme LSD1 mediates survival of ligand and AR-independent CRPC (extending its previously identified function as a driver of ligand-mediated AR activity). Specifically, we find that i. LSD1 overexpression is ubiquitous in metastatic CRPCs, including AR+ and AR- tumors;ii. the predominant category of ligand-independent LSD1 target genes involves control of the cell cycle and proliferation;and iii. LSD1 acts in an AR-axis independent manner by promoting cMyc driven tumor growth. Our data re-shape the accepted paradigm of LSD1 as a driver of ligand-mediated PCa growth, and additionally place it as a central driver in the progression of both ligand-independent AR+ CRPC and AR null CRPC. These data strongly suggest that suppression of LSD1 in the clinical setting will not only inhibit AR-pathway dependent PCa, but will inhibit the growth and potentially prevent progression to fully-androgen independent CRPC, thereby establishing the rationale for LSD1 inhibition as an important, mechanism-based therapeutic target. To fully elucidate the activity of LSD1 in driving CRPC, this project will: 1. Determine the role of c-Myc in LSD1-mediated induction of ligand-independent proliferation pathways in castration sensitive and castration resistant PCa models;2. Determine the anti-tumor efficacy of LSD1 suppression using the new LSD1 inhibitor SP-2509, alone or in combination with MDV3100, in ligand-independent AR+ and AR- preclinical CRPC models;and 3. Determine the biological effects, safety, and anti-tumor activity of the new LSD1 inhibitor SP-2509 in a phase I trial in men with metastatic CRPC. The need to target and translate key mechanisms such as the activity of LSD1, which is capable of simultaneously interdicting development of both AR-dependent and AR-independent mechanisms of progression and resistance, is an innovative approach of paramount importance and will yield novel data of immediate clinical translational relevance.

Public Health Relevance

This proposal will apply novel insights regarding the role of LSD1 in promoting ligand and AR-independent CRPC survival and lethal progression. Using in vitro cell lines, in vivo xenograft models, and tumor biopsies from men with CRPC enrolled in a phase 1 study of a novel LSD1 inhibitor, we will establish the specific mechanisms by which LSD1 acts, and lay the groundwork for phase II evaluation of LSD1 inhibitor therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097186-12
Application #
8933574
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (M1))
Program Officer
Hruszkewycz, Andrew M
Project Start
2002-09-19
Project End
2018-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$218,980
Indirect Cost
Name
Fred Hutchinson Cancer Research Center
Department
Type
DUNS #
078200995
City
Seattle
State
WA
Country
United States
Zip Code
98109
Pollan, Sara G; Huang, Fangjin; Sperger, Jamie M et al. (2018) Regulation of inside-out ?1-integrin activation by CDCP1. Oncogene 37:2817-2836
Wu, Yi-Mi; Cie?lik, Marcin; Lonigro, Robert J et al. (2018) Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer. Cell 173:1770-1782.e14
Schweizer, Michael T; Hancock, Michael L; Getzenberg, Robert H et al. (2018) Hormone levels following surgical and medical castration: defining optimal androgen suppression. Asian J Androl 20:405-406
Yan, Qingxiang; Bantis, Leonidas E; Stanford, Janet L et al. (2018) Combining multiple biomarkers linearly to maximize the partial area under the ROC curve. Stat Med 37:627-642
Lam, Hung-Ming; Corey, Eva (2018) Supraphysiological Testosterone Therapy as Treatment for Castration-Resistant Prostate Cancer. Front Oncol 8:167
Lam, Hung-Ming; Nguyen, Holly M; Corey, Eva (2018) Generation of Prostate Cancer Patient-Derived Xenografts to Investigate Mechanisms of Novel Treatments and Treatment Resistance. Methods Mol Biol 1786:1-27
Schenk, Jeannette M; Song, Xiaoling; Morrissey, Colm et al. (2018) Plasma Fatty Acids as Surrogate for Prostate Levels. Nutr Cancer 70:45-50
Beshiri, Michael L; Tice, Caitlin M; Tran, Crystal et al. (2018) A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 24:4332-4345
Das, Lipsa; Gard, Jaime M C; Prekeris, Rytis et al. (2018) Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Mol Cancer Res 16:1319-1331
Dai, James Y; Wang, Bo; Wang, Xiaoyu et al. (2018) Vigorous physical activity is associated with metastatic-lethal progression in prostate cancer and differential tumor DNA methylation in the CRACR2A gene. Cancer Epidemiol Biomarkers Prev :

Showing the most recent 10 out of 400 publications