The University of Pittsburgh proposes to continue a Specialized Program of Research Excellence (SPORE) in Head and Neck Cancer. The overall goals of the Pittsburgh Head and Neck SPORE are to improve the detection, and treatment of head and neck cancer. The SPORE program consists of four translational research projects in head and neck cancer, two research cores, an administrative core, a developmental research program and a career development program. The University of Pittsburgh Head and Neck SPORE will use an interdisciplinary approach to meet its objectives by carrying out projects with co-investigators in basic, applied and clinical science. It is also organ-specific in that its approach and all projects will test hypotheses about head and neck cancer biology, susceptibility, detection, or treatment. The long-term goal of the Head and Neck SPORE is to conduct clinical studies based on research results from the translational research projects that will serve as the basis for improving the outcome of patients diagnosed with head and neck cancer. The four main projects include: (1) Pathway and GWAS-SNPs: Role in SCCHN Risk, Outcome and Treatment;(2) Inhibition of the STATS Signaling Network;(3) Cellular Immunity and Immune Escape for EGFR Antibody Therapy;and (4) Therapeutic Mechanisms of Co-Targeting EGFR and Src Family Kinases. The three cores will interact closely to assist the main research projects, developmental research projects and the career development investigators in carrying out translational head and neck cancer research. The research cores include: (1) Histology/Tissue Banking and (2) Biostatistics and Informatics. The Administrative Core will solicit feedback from the Internal and External Scientific Advisory Boards and provide scientific, regulatory and fiscal oversight for the SPORE program. The Head and Neck SPORE investigators will work together to synergistically achieve the goals of the program and will also interact with investigators from SPOREs at other institutions to improve the outcome of patients with cancer of the head and neck.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-GRB-I (J1))
Program Officer
Ujhazy, Peter
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Pollock, Netanya I; Grandis, Jennifer R (2015) HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin Cancer Res 21:526-33
Li, Jing; Jie, Hyun-Bae; Lei, Yu et al. (2015) PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res 75:508-18
Johnson, Daniel E (2015) The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 22:T1-17
Sen, Malabika; Paul, Kathleen; Freilino, Maria L et al. (2014) Systemic administration of a cyclic signal transducer and activator of transcription 3 (STAT3) decoy oligonucleotide inhibits tumor growth without inducing toxicological effects. Mol Med 20:46-56
Parikh, Rahul A; Appleman, Leonard J; Bauman, Julie E et al. (2014) Upregulation of the ATR-CHEK1 pathway in oral squamous cell carcinomas. Genes Chromosomes Cancer 53:25-37
Johnston, Paul A; Sen, Malabika; Hua, Yun et al. (2014) High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 12:55-79
Qian, Wei; Wang, Jingnan; Roginskaya, Vera et al. (2014) Novel combination of mitochondrial division inhibitor 1 (mdivi-1) and platinum agents produces synergistic pro-apoptotic effect in drug resistant tumor cells. Oncotarget 5:4180-94
Klein, Jonah D; Sano, Daisuke; Sen, Malabika et al. (2014) STAT3 oligonucleotide inhibits tumor angiogenesis in preclinical models of squamous cell carcinoma. PLoS One 9:e81819
Peyser, Noah D; Grandis, Jennifer R (2014) Genetic mutations in head and neck cancer: utilizing existing treatments. Pharmacogenomics 15:1553-5
Li, Changyou; Egloff, Ann Marie; Sen, Malabika et al. (2014) Caspase-8 mutations in head and neck cancer confer resistance to death receptor-mediated apoptosis and enhance migration, invasion, and tumor growth. Mol Oncol 8:1220-30

Showing the most recent 10 out of 150 publications