There is convincing clinical evidence that the epidermal growth factor receptor (EGFR)-specific monoclonal antibody (mAb), cetuximab, is effective therapy for advanced head and neck squamous cell carcinoma (SCCHN). However, not all patients respond to cetuximab, and clinical responses are not correlated with level of EGFR expression on tumor cells. Thus, there is a need to understand why clinical responses vary among patients, in order to select those most likely to respond to cetuximab therapy. In contrast to EGFR tyrosine kinase inhibitors, the antitumor activity of cetuximab may benefit from its interactions with host's immune system, since cetuximab induces significant killing of SCCHN cells in vitro only in combination with natural killer (NK) cells and monocytes. Furthermore, in an animal model system the antitumor activity of cetuximab is enhanced by the addition of NK cells. This information has provided the rationale for our hypothesis that the antitumor activity of cetuximab is influenced by its ability to trigger an EGFR-specific cellular immune response and by the escape mechanisms SCCHN cells utilize to avoid immune recognition and destruction. In this proposal, we will first characterize in vitro the variables, which are involved in the generation of EGFR-specific cytotoxic T lymphocytes (CTL) by cetuximab. They include the polymorphism of the Fcy receptors expressed by NK cells, the EGFR expression level on SCCHN cells, and the ability of dendritic cells (DC) to cross-present tumor antigens to T cells following loading with SCCHN cells coated with cetuximab. In addition, we will characterize how the immunosuppressive activity of regulatory T cells interferes with the generation of EGFR-specific CTL as well as with their lytic activity and that of NK cells. To assess the clinical relevance of the in vitro results, we will determine how the balance between the induction of an EGFR-specific CTL response triggered by cetuximab and the immune escape mechanisms utilized by SCCHN cells impacts the clinical response to (antitumor activity of) cetuximab in SCCHN patients who will be enrolled in a trial associated with this project. The results derived from this study will have an impact on the clinical application of cetuximab-based immunotherapy in SCCHN patients by identifying predictive immune biomarkers of biological and clinical responses, optimizing the selection of patients to be treated with cetuximabbased immunotherapy and contributing to the design of interventions to enhance its efficacy. Furthermore, the principles defined with cetuximab may be applicable to other TA-specific mAb;therefore, the information derived from this translational proposal may have a broad significance for the clinical application of antibody-based immunotherapy to the treatment of malignant diseases.

Public Health Relevance

There is convincing clinical evidence that the EGFR-specific monoclonal antibody cetuximab, is effective therapy for advanced SCCHN. However, not all patients respond to cetuximab, and clinical responses are not correlated with level of EGFR expression on tumor cells. Thus, there is a need to understand why clinical responses vary among patients, in order to select those most likely to respond to cetuximab therapy. The results derived from this study will have an impact on the clinical application of cetuximab-based immunotherapy in SCCHN patients, by identifying predictive immune biomarkers of biological and clinical responsiveness, by optimizing the selection of patients to be treated with cetuximab-based immunotherapy and by contributing to the design of interventions to enhance its efficacy. Furthermore, the principles defined with cetuximab may be applicable to other TA-specific mAb;therefore the information derived from this translational may have an impact on the clinical application of antibody-based immunotherapy for the treatment of malignant diseases.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097190-09
Application #
8541588
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
9
Fiscal Year
2013
Total Cost
$262,494
Indirect Cost
$86,636
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Ledgerwood, Levi G; Kumar, Dhruv; Eterovic, Agda Karina et al. (2016) The degree of intratumor mutational heterogeneity varies by primary tumor sub-site. Oncotarget 7:27185-98
Wen, Yihui; Li, Hua; Zeng, Yan et al. (2016) MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget 7:23300-11
Lang Kuhs, Krystle A; Pawlita, Michael; Gibson, Sandra P et al. (2016) Characterization of human papillomavirus antibodies in individuals with head and neck cancer. Cancer Epidemiol 42:46-52
Kiesel, Brian F; Parise, Robert A; Guo, Jianxia et al. (2016) Toxicity, pharmacokinetics and metabolism of a novel inhibitor of IL-6-induced STAT3 activation. Cancer Chemother Pharmacol 78:1225-1235
Lesseur, Corina; Diergaarde, Brenda; Olshan, Andrew F et al. (2016) Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat Genet 48:1544-1550
Scharping, Nicole E; Menk, Ashley V; Moreci, Rebecca S et al. (2016) The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction. Immunity 45:374-88
Trivedi, Sumita; Rosen, Clark A; Ferris, Robert L (2016) Current understanding of the tumor microenvironment of laryngeal dysplasia and progression to invasive cancer. Curr Opin Otolaryngol Head Neck Surg 24:121-7
Walline, Heather M; Carey, Thomas E; Goudsmit, Christine M et al. (2016) High-Risk HPV, Biomarkers, and Outcome in Matched Cohorts of Head and Neck Cancer Patients Positive and Negative for HIV. Mol Cancer Res :
Chiosea, Simion I; Thompson, Lester D R; Weinreb, Ilan et al. (2016) Subsets of salivary duct carcinoma defined by morphologic evidence of pleomorphic adenoma, PLAG1 or HMGA2 rearrangements, and common genetic alterations. Cancer 122:3136-3144
Li, Hua; Wheeler, Sarah; Park, Yongseok et al. (2016) Proteomic Characterization of Head and Neck Cancer Patient-Derived Xenografts. Mol Cancer Res 14:278-86

Showing the most recent 10 out of 246 publications