The Tissue Core provides staff and technology dedicated to enhancing sample integrity and usability throughuse of optimized harvesting procedures; multi-modality preservation and processing; histopathologic-molecular morphologic characterization; and computerized inventory and web-based request and trackingsystems. All aspects of sample identification, processing and storage are performed with strict complianceto the College of American Pathologists (CAP) guidelines. In order to maximize sharing and integration ofSPORE projects, the Tissue Core collects and makes available data derived from all distributed samples.
Specific Aims of SPORE Tissue Core:A. To acquire tissue samples from the operating room and SPORE Animal Research Core with optimizedhandling to maximize cell viability and/or minimize the warm-ischemic interval so as to meet the tissueaccrual requirements for the Brain Tumor SPORE projects and trials.B. To perform quality control tests on archived tissue samples collected from the operating room andSPORE Animal Research Core, to ensure availability of adequate numbers of consistently handledspecimens that will yield useable data for SPORE projects and clinical trials.C. To maintain a SPORE Tissue Core database containing demographic data, results from molecularanalyses, and tissue distributions (internal and external) that will be linked to relational clinical databasesmaintained by the Biostatistics and Clinical Core.D. To provide routine and advanced tissue handling/processing and analytical techniques, includingimmunohistochemistry, chromogenic in situ hybridization (CISH), tissue microarray construction, lasercapture micro-dissection, RNA extraction, and preparation of viable cells that will advance project hypothesisdevelopment and goal attainment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA097257-06
Application #
7253814
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
2007-05-01
Project End
2012-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
6
Fiscal Year
2007
Total Cost
$194,158
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Pekmezci, Melike; Stevers, Meredith; Phillips, Joanna J et al. (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485-488
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:
Taylor, Jennie W; Parikh, Mili; Phillips, Joanna J et al. (2018) Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol 140:477-483
Luks, Tracy L; McKnight, Tracy Richmond; Jalbert, Llewellyn E et al. (2018) Relationship of In Vivo MR Parameters to Histopathological and Molecular Characteristics of Newly Diagnosed, Nonenhancing Lower-Grade Gliomas. Transl Oncol 11:941-949
Viswanath, Pavithra; Radoul, Marina; Izquierdo-Garcia, Jose Luis et al. (2018) 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res 78:2290-2304
An, Zhenyi; Knobbe-Thomsen, Christiane B; Wan, Xiaohua et al. (2018) EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma. Cancer Res 78:6785-6794
Mancini, Andrew; Xavier-Magalhães, Ana; Woods, Wendy S et al. (2018) Disruption of the ?1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell 34:513-528.e8
Disney-Hogg, Linden; Sud, Amit; Law, Philip J et al. (2018) Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer 118:1020-1027

Showing the most recent 10 out of 362 publications