This SPORE renewal application represents the efforts of interdisciplinary teams of investigators from the Neuro-Oncology Program of the UCSF Comprehensive Cancer Center to apply their knowledge and expertise to translational research focused on brain tumors. The heart of the application is five translational research projects, each driven by teams of applied and basic investigators, and each intended to create novel tools and therapies useful in the treatment of brain tumors. Project One is an extension of a highly successful population science project that intends to define factors important in glioma patient survival. Project Two is an extension of a highly successful imaging project that intends to use sophisticated spectroscopic techniques to non-invasively define factors that predict low-grade glioma biology. Project Three builds on novel drug-containing lipidic nanoparticles developed in the previous funding period, and proposes to generate and test new therapeutic nanoparticles whose distribution can be controlled by convection-enhanced delivery and monitored in real time spectroscopically. Project Four proposes lab based and clinical studies intended to clarify and exploit the negative association discovered in the previous funding period between Akt activation and sensitivity to the EGFR inhibitor erlotinib. Project Five, which evolved from the convergence of two Developmental Research Projects in the previous funding period, proposes lab-based and clinical studies intended to investigate and exploit the role the PTEN/Akt/mTOR pathway plays in response to glioma vaccine therapy. The application also requests continued support for highly successful Career Development and Developmental Research Programs, and for four Cores (the existing Tissue and Administrative Cores and the new Animal and Biostatistics/Clinical Core) that will support all aspects of the work. Each project draws on the extensive experience of the investigators in brain tumor research, and on the long history of translational brain tumor research in the UCSF Department of Neurological Surgery and UCSF Brain Tumor Research Center. The projects will be additionally strengthened by collaborations with scientists in the UCSF Comprehensive Cancer Center and in the UCSF Breast and Prostate SPOREs. Finally, as a leading center of brain tumor clinical trials in America, an infrastructure is in place in the UCSF Neuro-Oncology Program to allow rapid clinical translation of important scientific discoveries. The Principal Investigator of the UCSF Brain Tumor SPORE is Mitchel Berger, MD, a nationally recognized leader in neurosurgery and translational brain tumor research. The clinical co-PI of this application is Michael Prados, MD, the PI of the North American Brain Tumor Consortium and a recognized leader in the development and implementation of clinical trials in brain tumors. The basic science co-PI of this application is Russell Pieper, PhD, the Basic Science Director of the UCSF Neuro-Oncology Program and the UCSF Brain Tumor Research Center and a recognized leader in the study of cell signaling in gliomas. The combined administrative, clinical, and lab-based experience of the leadership team, along with the strong interdisciplinary research teams and the strong research climate at UCSF suggest that the work proposed will lead to significant progress in the treatment of brain tumors.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Program Officer
Arnold, Julia T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2017) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol :
Campbell, Brittany B; Light, Nicholas; Fabrizio, David et al. (2017) Comprehensive Analysis of Hypermutation in Human Cancer. Cell 171:1042-1056.e10
Neill, Evan; Luks, Tracy; Dayal, Manisha et al. (2017) Quantitative multi-modal MR imaging as a non-invasive prognostic tool for patients with recurrent low-grade glioma. J Neurooncol 132:171-179
Wiencke, John K; Koestler, Devin C; Salas, Lucas A et al. (2017) Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clin Epigenetics 9:10
Raleigh, David R; Solomon, David A; Lloyd, Shane A et al. (2017) Histopathologic review of pineal parenchymal tumors identifies novel morphologic subtypes and prognostic factors for outcome. Neuro Oncol 19:78-88
Müller, Sören; Diaz, Aaron (2017) Single-Cell mRNA Sequencing in Cancer Research: Integrating the Genomic Fingerprint. Front Genet 8:73
López, Giselle; Oberheim Bush, Nancy Ann; Berger, Mitchel S et al. (2017) Diffuse non-midline glioma with H3F3A K27M mutation: a prognostic and treatment dilemma. Acta Neuropathol Commun 5:38
Lee, Julieann; Solomon, David A; Tihan, Tarik (2017) The role of histone modifications and telomere alterations in the pathogenesis of diffuse gliomas in adults and children. J Neurooncol 132:1-11
Jahangiri, Arman; Nguyen, Alan; Chandra, Ankush et al. (2017) Cross-activating c-Met/?1 integrin complex drives metastasis and invasive resistance in cancer. Proc Natl Acad Sci U S A 114:E8685-E8694
Kline, Cassie N; Joseph, Nancy M; Grenert, James P et al. (2017) Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol 19:699-709

Showing the most recent 10 out of 336 publications