The Immunology Core (Core D) is a new core that was established after discussion by the SPORE Internal and External Advisory Committees and in response to the previous critique of our renewal application. The principal goal of the Core is to establish standardized assays of cellular and humoral immune responses to the vaccines being developed and tested by the four projects of the SPORE program. Standardization will be achieved by use of uniform reagents and protocols, trained personnel and stringent quality control measures. Centralized performance of these assays will facilitate head-to-head comparisons of vaccines that use the same primary immunological outcome measures and provide for efficient use of resources. Because some SPORE investigators have a financial interest in the vaccines that are being tested, assessment of immunogenicity by an independently directed laboratory will also allay concerns over possible conflicts of interest. The services provided by the Core to the individual projects are the following. For Project I, the assays include serum IgG-specific HPV 16 L1 virus like particle (VLP) enzyme linked immunosorbent assay (ELISA) and HPV 16, 31 and 33 in vitro pseudovirion neutralization assays. The latter 2 types are included to assess possible cross neutralization of genetically related types. For Project II, the Core will perform an ELISA to detect serum IgG directed against the vaccinogen, HPV L2 11-200x3 protein and in vitro pseudovirion neutralization assays for HPV 6 and 11 and 15 high risk HPV types. For the subset of subjects vaccinated with Gardasil, serum samples will be tested in the HPV 16 VLP ELISA and HPV 6, 11, 16, 18, 31, 33 and 45 pseudovirion neutralization assays. For Projects III and IV, the Core will perform IFN- gamma ELISPOT assays on unfractionated peripheral blood mononuclear cells (PBMC) following overnight stimulation with pools of E6 or E7 peptides. The CD8+ and CD4 + phenotype of the responding lymphocytes will be confirmed by intracellular cytokine staining and flow cytometry. Secondary immunologic assays, assays specific to an individual project and novel immunologic assay development will be performed and perfected by the investigators within the individual projects and only transferred to the Immunology Core when fully optimized and standardized. The Immunology Core will interact extensively with the individual projects as well as the Tissue/Pathology Core (Core C), which will provide specimens, and the Biostatistlcs/Data Management Core (Core B), which will perform data analyses.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA098252-09
Application #
8379257
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
9
Fiscal Year
2012
Total Cost
$217,513
Indirect Cost
$57,553
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Leath 3rd, Charles A; Monk, Bradley J (2018) Twenty-first century cervical cancer management: A historical perspective of the gynecologic oncology group/NRG oncology over the past twenty years. Gynecol Oncol 150:391-397
Mao, Chih-Ping; Peng, Shiwen; Yang, Andrew et al. (2018) Programmed self-assembly of peptide-major histocompatibility complex for antigen-specific immune modulation. Proc Natl Acad Sci U S A 115:E4032-E4040
Wang, Joshua W; Wu, Wai Hong; Huang, Tsui-Chin et al. (2018) Roles of Fc Domain and Exudation in L2 Antibody-Mediated Protection against Human Papillomavirus. J Virol 92:
Bywaters, S M; Brendle, S A; Biryukov, J et al. (2018) Production and characterization of a novel HPV anti-L2 monoclonal antibody panel. Virology 524:106-113
Powell, T Clark; Dilley, Sarah E; Bae, Sejong et al. (2018) The Impact of Racial, Geographic, and Socioeconomic Risk Factors on the Development of Advanced-Stage Cervical Cancer. J Low Genit Tract Dis 22:269-273
Cheng, Max A; Farmer, Emily; Huang, Claire et al. (2018) Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases. Hum Gene Ther 29:971-996
Lin, Yi-Hsin; Yang, Ming-Chieh; Tseng, Ssu-Hsueh et al. (2018) Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16+ Oral Tumors and Immunologic Control. Cancer Immunol Res :
Boitano, Teresa K L; Smith, Haller J; Rushton, Tullia et al. (2018) Impact of enhanced recovery after surgery (ERAS) protocol on gastrointestinal function in gynecologic oncology patients undergoing laparotomy. Gynecol Oncol 151:282-286
Anchoori, Ravi K; Jiang, Rosie; Peng, Shiwen et al. (2018) Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS Omega 3:11917-11929
Ooki, Akira; Dinalankara, Wikum; Marchionni, Luigi et al. (2018) Epigenetically regulated PAX6 drives cancer cells toward a stem-like state via GLI-SOX2 signaling axis in lung adenocarcinoma. Oncogene 37:5967-5981

Showing the most recent 10 out of 291 publications