The biomarker core will provide a centralized resource for the rapid, high throughput quantification of transcripts and proteins. Transcripts will be quantified using quantitative PCR (Q-PCR). In addition the Biomarker Core will provide for genome-wide microarray analysis using an lllumina Beadstation. Quantification of protein levels in blood or tissue lysates will be done using a MesoScale Sector Imager or by reverse-phase protein array (RPPA) The biomarker core will serve to provide: 1) quantitative mRNA levels for known genes that are Involved In proliferation and implicated in cancer progression;2) identification of unique proteins, genes and expression profiles in cells or tissues after a molecular or pharmacologic manipulation;3) validation of the expression of genes that are initially identified in screening by microan-ays, 4) quantification of protein levels both as an independent validation technique and to determine the relationship between transcript levels and protein levels.
Specific Aims 1 -4 represent interactions between projects in the SPORE and the Biomarker Core.
Specific Aim 1 Metformin for the chemoprevention of endometrial cancer in obese, insulin resistant women. These studies will use both animal models of obesity and conduct a clinical trial using metformin and examine the impact on endometrial cancer. Biomarkers that will be measured include Ki-67, Cyclin A, sFRPI, sFRP4, survivin, EIG121, RALDH2, PR, ER, IGF-1 IGF-1 R. RPPA and microarrays will also be used in these studies.
Specific Aim 2. Sfrafegy for the Incorporation of Tissue S/omarkers in the Clinicai Management of Endometrial Cancer Patients. This project will assess the utility of a panel of 7 previously identified biomarkers in a large number of FFPE endometrial samples. This project will also use RPPA to help discover new biomarkers to augment the current biomarker panel.
Specific Aim 3 EphA2 Targeting in Uterine Carcinoma. These studies will evaluate the function of EphA2 in cancer and conduct a clinical trial of a novel immuno-conjugate that targets the EphA2 receptor. Q-PCR will assess the biomarkers listed above, markers of angiogenesis, and cell free nucleic acids. Pre-and post- biopsy endometrial will be assayed for the core biomarkers, markers of angiogenesis and EphA2 transcripts. Microarray studies will be conducted to identify both pathways and novel genes regulated by EphA2.
Specific Aim 4 Targeting the Pi3K Signaling Pathway in Endometrial Carcinoma. In these studies the Core will examine by RPPA approximately 550 tissue specimens for alteration in the expression and phosphorylation of members of the PISK signaling pathway.
Specific Aim 5 is a project within the Biomarker Core that will perform microarray analysis and QPCR validation on approximately 90 samples from patients with HNPCC at baseline and following 3 months of chemoprevention therapy with either oral contraceptives or depot medroxyprogesterone.

Public Health Relevance

The biomarker core will provide a centralized resource for the rapid, high throughput quantification of transcripts and proteins for all components of the Uterine SPORE. Transcripts will be quantified using quantitative PCR (Q-PCR). In addition the Biomarker Core will provide for genome-wide microarray analysis using an lllumina Beadstation. Quantification of protein levels in blood or tissue lysates will be done using a MesoScale Sector Imager or by reverse-phase protein array.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA098258-10
Application #
8724919
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
10
Fiscal Year
2014
Total Cost
$215,900
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Peng, Xinxin; Xu, Xiaoyan; Wang, Yumeng et al. (2018) A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. Cancer Cell 33:817-828.e7
Villar-Prados, Alejandro; Wu, Sherry Y; Court, Karem A et al. (2018) Predicting novel therapies and targets: Regulation of Notch3 by the bromodomain protein BRD4. Mol Cancer Ther :
Haemmerle, Monika; Stone, Rebecca L; Menter, David G et al. (2018) The Platelet Lifeline to Cancer: Challenges and Opportunities. Cancer Cell 33:965-983
Allen, Julie K; Armaiz-Pena, Guillermo N; Nagaraja, Archana S et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res 78:3233-3242
Chen, Xiuhui; Mangala, Lingegowda S; Rodriguez-Aguayo, Cristian et al. (2018) RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37:107-124
Ng, Patrick Kwok-Shing; Li, Jun; Jeong, Kang Jin et al. (2018) Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell 33:450-462.e10
Wang, Jue; Zhao, Wei; Guo, Huifang et al. (2018) AKT isoform-specific expression and activation across cancer lineages. BMC Cancer 18:742
Berger, Ashton C; Korkut, Anil; Kanchi, Rupa S et al. (2018) A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell 33:690-705.e9
Huang, Yan; Hu, Wei; Huang, Jie et al. (2018) Inhibiting Nuclear Phospho-Progesterone Receptor Enhances Antitumor Activity of Onapristone in Uterine Cancer. Mol Cancer Ther 17:464-473
Pal, Navdeep; Broaddus, Russell R; Urbauer, Diana L et al. (2018) Treatment of Low-Risk Endometrial Cancer and Complex Atypical Hyperplasia With the Levonorgestrel-Releasing Intrauterine Device. Obstet Gynecol 131:109-116

Showing the most recent 10 out of 578 publications