The University of Texas M.D. Anderson Cancer Center is proposing a Specialized Program of Research Excellence (SPORE) in Leukemia. The primary goal of this Leukemia SPORE is to cultivate and facilitate innovative and significant translational research in the biologic, genetic and clinical aspects of leukemia to improve understanding, therapy, and prognosis. The multidisciplinary group of investigators in the Leukemia SPORE will accomplish this goal through effective integration of laboratory, epidemiologic and clinical investigations. The SPORE is designed with 5 research projects and 3 core resources, as well as programs for developmental research and career development. The research projects are designed to target specific areas important in leukemia. ? ? Project 1 - Epigenetics and epigenetic therapy in AML ? Project 2 - Adoptive Cellular Therapy for Myeloid Leukemia ? Project 3 - p53 Activation as Novel Therapeutic Strategy for Acute Myelogenous Leukemia ? Project 4 - Incorporating FLT3 inhibitors into AML treatment regimens ? Project 5 - Development of Sepacitabine Therapy in Leukemia's ? ? Core and other resources are: ? Core A - Administration ? Core B - Pathology and Tissue Core ? Core C- Biostatistics and Data Management ? ? Development Research Program and Career Development Program. ? Through this leukemia SPORE, our research team will make a significant impact on leukemia prognosis. ? ? Lay Abstract: This leukemia SPORE integrates clinical and basic investigations to introduce new therapies in leukemia that are aimed at increasing the cure rate in this disease. ? ? ? ?

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Program Officer
Nothwehr, Steven F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Internal Medicine/Medicine
Other Domestic Higher Education
United States
Zip Code
Sekihara, Kazumasa; Saitoh, Kaori; Han, Lina et al. (2017) Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget 8:34552-34564
Johanning, Gary L; Malouf, Gabriel G; Zheng, Xiaofeng et al. (2017) Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci Rep 7:41960
Katerndahl, Casey D S; Heltemes-Harris, Lynn M; Willette, Mark J L et al. (2017) Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol 18:694-704
Kanagal-Shamanna, Rashmi; Loghavi, Sanam; DiNardo, Courtney D et al. (2017) Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica 102:1661-1670
Mu, Yunxiang; Zelazowska, Monika A; McBride, Kevin M (2017) Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene. J Exp Med 214:3543-3552
Kelly, A D; Kroeger, H; Yamazaki, J et al. (2017) A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 31:2011-2019
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara et al. (2017) Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 127:2392-2406
Pratz, Keith W; Levis, Mark (2017) How I treat FLT3-mutated AML. Blood 129:565-571
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305
Kayser, Sabine; Levis, Mark J (2017) Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol :

Showing the most recent 10 out of 450 publications