The University of Texas M.D. Anderson Cancer Center is proposing a Specialized Program of Research Excellence (SPORE) in Leukemia. The primary goal of this Leukemia SPORE is to cultivate and facilitate innovative and significant translational research in the biologic, genetic and clinical aspects of leukemia to improve understanding, therapy, and prognosis. The multidisciplinary group of investigators in the Leukemia SPORE will accomplish this goal through effective integration of laboratory, epidemiologic and clinical investigations. The SPORE is designed with 5 research projects and 3 core resources, as well as programs for developmental research and career development. The research projects are designed to target specific areas important in leukemia. Project 1 - Epigenetics and epigenetic therapy in AML Project 2 - Adoptive Cellular Therapy for Myeloid Leukemia Project 3 - p53 Activation as Novel Therapeutic Strategy for Acute Myelogenous Leukemia Project 4 - Incorporating FLT3 inhibitors into AML treatment regimens Project 5 - Development of Sepacitabine Therapy in Leukemia's Core and other resources are: Core A - Administration Core B - Pathology and Tissue Core Core C- Biostatistics and Data Management Development Research Program and Career Development Program. Through this leukemia SPORE, our research team will make a significant impact on leukemia prognosis. Lay Abstract: This leukemia SPORE integrates clinical and basic investigations to introduce new therapies in leukemia that are aimed at increasing the cure rate in this disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M (J1))
Program Officer
Nothwehr, Steven F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Internal Medicine/Medicine
Other Domestic Higher Education
United States
Zip Code
Issa, Jean-Pierre; Garcia-Manero, Guillermo; Huang, Xuelin et al. (2015) Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia. Cancer 121:556-61
Huang, Xuelin; Ning, Jing; Wahed, Abdus S (2014) Optimization of individualized dynamic treatment regimes for recurrent diseases. Stat Med 33:2363-78
Yousefzadeh, Matthew J; Wyatt, David W; Takata, Kei-Ichi et al. (2014) Mechanism of suppression of chromosomal instability by DNA polymerase POLQ. PLoS Genet 10:e1004654
Grunwald, Michael R; Tseng, Li-Hui; Lin, Ming-Tseh et al. (2014) Improved FLT3 internal tandem duplication PCR assay predicts outcome after allogeneic transplant for acute myeloid leukemia. Biol Blood Marrow Transplant 20:1989-95
Su, Xiaoping; Malouf, Gabriel G; Chen, Yunxin et al. (2014) Comprehensive analysis of long non-coding RNAs in human breast cancer clinical subtypes. Oncotarget 5:9864-76
Chae, Young Kwang; Dimou, Anastasios; Pierce, Sherry et al. (2014) The effect of calcium channel blockers on the outcome of acute myeloid leukemia. Leuk Lymphoma 55:2822-9
Konig, Heiko; Levis, Mark (2014) Is targeted therapy feasible in acute myelogenous leukemia? Curr Hematol Malig Rep 9:118-27
Galanis, Allison; Ma, Hayley; Rajkhowa, Trivikram et al. (2014) Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood 123:94-100
Bottoni, Arianna; Calin, George A (2014) MicroRNAs as main players in the pathogenesis of chronic lymphocytic leukemia. Microrna 2:158-64
Zhang, Yun; Xiong, Shunbin; Li, Qin et al. (2014) Tissue-specific and age-dependent effects of global Mdm2 loss. J Pathol 233:380-91

Showing the most recent 10 out of 222 publications