Effective therapies for acute leukemias have been developed incrementally, advanced by the development of agents with different mechanisms of action. Sapacitabine, the orally bioavailable form of CNDAC (2'-Ccyano- 2'-deoxy-1-/3-D-ara?>/no-pentofuranosyl- cytosine), is a potent cytosine nucleoside analogue with a novel mechanism of action. The design of CNDAC was based on the concept that once its triphosphate is incorporated into DMA, the addition of a subsequent deoxynucleotide would initiate 3-elimination, resulting in cleavage of the 3'-5'phosphodiester linkage and conversion of incorporated analogue to a chain-terminating nucleotide, CNddC. Clinically active in phase I studies, the mechanisms of action of sapacitabine are unique among therapeutic agents, as it causes a single strand nick in DMA that is terminated by a nucleotide that cannot be extended and is resistant to repair. Our hypothesis is that sapacitabine will elicit novel pharmacodynamic responses for detecting DMA damage, for repair of the lesions, and for activation of cell cycle checkpoints that will serve as biomarkers to guide clinical development of sapacitabine alone and in combination with targeted inhibitors of these pathways. We will conduct translational studies in primary leukemia cells in vitro and during therapy that will complement and extend ongoing laboratory investigations.
The specific aims for testing this hypothesis are: 1. Evaluate pharmacokinetics and pharmacodynamics of sapacitabine during phase l/ll clinical trials in patients with relapsed/refractory leukemias, 2. Characterize biomarkers for cellular responses to sapacitabine, 3. Formulate laboratory rationales for clinical translation of mechanism-based combinations of sapacitabine with small molecule inhibitors. The overall goal of our proposal is aimed at developing a thorough understanding of cellular responses to sapacitabine that will identify biomarkers that have prognostic value to optimize patient selection and schedules of administration in the clinic, and to provide rationales for combinations with agents targeted at inhibiting DMA damage sensors, DNA repair mechanisms, and dysregulating checkpoint controls. Lay abstract: We have identified a drug candidate that kills cancer cells in ways that are different from all other drugs. We have shown that it active treatment in humans with leukemia who have not responded to standard therapies, and propose laboratory and clinical studies that may increase its effectiveness at treating these and other cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Sekihara, Kazumasa; Saitoh, Kaori; Han, Lina et al. (2017) Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget 8:34552-34564
Johanning, Gary L; Malouf, Gabriel G; Zheng, Xiaofeng et al. (2017) Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci Rep 7:41960
Katerndahl, Casey D S; Heltemes-Harris, Lynn M; Willette, Mark J L et al. (2017) Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol 18:694-704
Kanagal-Shamanna, Rashmi; Loghavi, Sanam; DiNardo, Courtney D et al. (2017) Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica 102:1661-1670
Mu, Yunxiang; Zelazowska, Monika A; McBride, Kevin M (2017) Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene. J Exp Med 214:3543-3552
Kelly, A D; Kroeger, H; Yamazaki, J et al. (2017) A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 31:2011-2019
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara et al. (2017) Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 127:2392-2406
Pratz, Keith W; Levis, Mark (2017) How I treat FLT3-mutated AML. Blood 129:565-571
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305
Kayser, Sabine; Levis, Mark J (2017) Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol :

Showing the most recent 10 out of 450 publications