The primary goal of this project is to improve treatment outcomes and cure rates of patients with acute myelogenous leukemia (AML) by developing novel, non-genotoxic therapeutic strategies that maximize the induction of leukemia cell apoptosis. TP53 is the master regulator of apoptosis that is frequently inactivated by overexpression of MDM2. Restoration of p53 activity by inhibition of MDM2-p53 interaction with non-genotoxic small molecule inhibitors (Nutlin-3a, RG7112, MI-63) dramatically increases cellular p53 levels and induces apoptosis. During the past funding period, we have generated pre-clinical and clinical evidence to support this concept. While much p53 in AML is localized in the cytoplasm, only nuclear p53 can function as transcription factor. Exportini (CRM1) is the major nuclear transporter of p53. Preliminary data suggest that CRM1 overexpression is associated with poor prognosis in AML. SINEs (selective inhibitors of nuclear export) are new, potent, irreversible and selective small molecule inhibitors of CRM1 [5, 6]. Our overall hypothesis is that nuclear retention of p53 by CRMI inhibition and non- genotoxic activation of p53 by inhibition of MDM2 will induce/enhance apoptosis in AML. in addition, we hypothesize that p53 is an important determinant of microenvironmental function.
In Aim 1 we will test the hypothesis that blockade of p53 nuclear export by CRMI inhibition in AML enhances apoptosis induced by M0M2 inhibition. We reported that AML cells express p53 predominantly in the cytoplasm and hypothesize that CRMI inhibition results in nuclear accumulation and activity of p53, thereby enhancing p53-mediated transcription- dependent apoptosis. SINEs have minimal toxicities in normal human cells, including hematopoietic cells in vitro and in vivo. Our preliminary data show that SINEs induce cell death in AML in a p53-dependent manner. We will investigate if nuclear retention of p53 by CRMI inhibition synergizes with accumulation of p53 by MDM2 inhibition to induce apoptosis in AML.
In Aim 2 we will investigate the role of p53 activation by MDM2 and CRMI inhibition in the bone marrow microenvironment. Bone marrow stromal cells protect AML cells from various anti-leukemic agents, but the MDM2 inhibitor Nutlin-3a or SINE KPT-185 kill AML cells even in the presence of

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
Sekihara, Kazumasa; Saitoh, Kaori; Han, Lina et al. (2017) Targeting mantle cell lymphoma metabolism and survival through simultaneous blockade of mTOR and nuclear transporter exportin-1. Oncotarget 8:34552-34564
Johanning, Gary L; Malouf, Gabriel G; Zheng, Xiaofeng et al. (2017) Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Sci Rep 7:41960
Katerndahl, Casey D S; Heltemes-Harris, Lynn M; Willette, Mark J L et al. (2017) Antagonism of B cell enhancer networks by STAT5 drives leukemia and poor patient survival. Nat Immunol 18:694-704
Kanagal-Shamanna, Rashmi; Loghavi, Sanam; DiNardo, Courtney D et al. (2017) Bone marrow pathologic abnormalities in familial platelet disorder with propensity for myeloid malignancy and germline RUNX1 mutation. Haematologica 102:1661-1670
Mu, Yunxiang; Zelazowska, Monika A; McBride, Kevin M (2017) Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene. J Exp Med 214:3543-3552
Kelly, A D; Kroeger, H; Yamazaki, J et al. (2017) A CpG island methylator phenotype in acute myeloid leukemia independent of IDH mutations and associated with a favorable outcome. Leukemia 31:2011-2019
Nieborowska-Skorska, Margaret; Sullivan, Katherine; Dasgupta, Yashodhara et al. (2017) Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 127:2392-2406
Pratz, Keith W; Levis, Mark (2017) How I treat FLT3-mutated AML. Blood 129:565-571
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305
Kayser, Sabine; Levis, Mark J (2017) Advances in targeted therapy for acute myeloid leukaemia. Br J Haematol :

Showing the most recent 10 out of 450 publications