Activating mutations of the rejceptor tyrosine kinase FLT3 are one of the most common mutations found in acute myeloid leukemia (AML) and are clearly associated with a poor prognosis. FLT3 therefore represents a logical therapeutic target. During the first five years of this project, we used in vitro studies to identify and characterize a series of small molecule FLT3 inhibitors for use as monotherapy and in combination with chemotherapy, and carried out early phase single agent trials of the most promising compounds. Over the past five years we carried out correlative studies using samples collected from a large number of trials of FLT3 inhibitors used as single agents and in combination with chemotherapy. We have determined that potent FLT3 inhibition in vivo results in significant clinical benefit, inducing clearance of circulating leukemia cells and terminal differentiation of marrow blasts. We hypothesize that survival for patients with FLT3/ITD AML can be significantly improved with the use of FLT3 inhibitors. For younger patients, we predict that FLT3 inhibition combined with induction chemotherapy will increase the remission rate, and that combination with consolidation therapy, as well as maintenance therapy, will minimize the relapse risk. For older patients, the combination of FLT3 inhibition with hypomethylating agents offers the potential for synergistic anti-leukemic effect as well as better tolerability. However, the data from our correlative studies indicates that a number of clinical variables influence the efficacy of FLT3 inhibition, depending on the context in which the TKIs are used. Monotherapy with FLT3 TKIs leads to the development of resistance mutations, while the combination of FLT3 TKIs with chemotherapy is complicated by the effects of c-KlT inhibition, the competing effects of FLT3 ligand, and less predictable pharmacokinetics. In order to address these issues, we propose to optimize the use of two FLT3 TKIs, AC220 and crenolanib, with a combination of in vitro studies and clinical trials with correlative studies. Our approach is organized into 3 specific aims. First, we will establish the optimal dose and schedule for AC220 both as monotherapy and in combination with standard chemotherapy using correlative studies from clinical trial samples. Second, we will investigate combinations of FLT3 inhibitors with DNA methyltransferase inhibitors (DNMTi), both in vitro and in the context of a proposed clinical trial. Third, we will use in vitro cell line models and primary AML samples cultured with bone marrow stroma, as well as correlative data from a proposed phase 2 clinical trial, to establish the efficacy of crenolanib as a FLT3 inhibitor with activity against FLT3 kinase domain mutations.

Public Health Relevance

The translational impact of the proposed work will be to synthesize the laboratory correlative data obtained from several previous monotherapy and combination FLT3 inhibitor trials into a series of focused trials designed to improve outcomes for specific subsets of patients with FLT3/ITD AML. The clinical impact of this proposed work will be to provide exact treatment regimens, derived from an integration of FLT3 inhibitors into standard-of-care practice, that will improve the overall survival for these patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
United States
Zip Code
St John, Lisa S; Wan, Liping; He, Hong et al. (2016) PR1-specific cytotoxic T lymphocytes are relatively frequent in umbilical cord blood and can be effectively expanded to target myeloid leukemia. Cytotherapy 18:995-1001
Lee, H J; Gallardo, M; Ma, H et al. (2016) p53-independent ibrutinib responses in an Eμ-TCL1 mouse model demonstrates efficacy in high-risk CLL. Blood Cancer J 6:e434
Pemmaraju, Naveen; Kantarjian, Hagop; Ravandi, Farhad et al. (2016) Patient Characteristics and Outcomes in Adolescents and Young Adults (AYA) With Acute Myeloid Leukemia (AML). Clin Lymphoma Myeloma Leuk 16:213-222.e2
Van Roosbroeck, Katrien; Fanini, Francesca; Setoyama, Tetsuro et al. (2016) Combining anti-miR-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res :
Ravandi, Farhad; Jorgensen, Jeffrey L; O'Brien, Susan M et al. (2016) Minimal residual disease assessed by multi-parameter flow cytometry is highly prognostic in adult patients with acute lymphoblastic leukaemia. Br J Haematol 172:392-400
Chawla, Akhil; Alatrash, Gheath; Philips, Anne V et al. (2016) Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunol Immunother 65:741-51
Wen, Sijin; Huang, Xuelin; Frankowski, Ralph F et al. (2016) A Bayesian multivariate joint frailty model for disease recurrences and survival. Stat Med 35:4794-4812
Kanagal-Shamanna, Rashmi; Luthra, Rajyalakshmi; Yin, Cameron C et al. (2016) Myeloid neoplasms with isolated isochromosome 17q demonstrate a high frequency of mutations in SETBP1, SRSF2, ASXL1 and NRAS. Oncotarget 7:14251-8
Pan, D; Jiang, C; Ma, Z et al. (2016) MALT1 is required for EGFR-induced NF-κB activation and contributes to EGFR-driven lung cancer progression. Oncogene 35:919-28
Saenz, D T; Fiskus, W; Manshouri, T et al. (2016) BET protein bromodomain inhibitor-based combinations are highly active against post-myeloproliferative neoplasm secondary AML cells. Leukemia :

Showing the most recent 10 out of 377 publications