The past several years have seen tremendous advances in the engineering of immune effector cells as therapy for cancer. However, chimeric antigen receptor (CAR)-modified T-cells have a number of limitations. The generation of an autologous product for each individual patient is logistically cumbersome and restrictive for widespread clinical use. The manufacturing of CAR T-cells often takes several weeks, making it impractical for patients with rapidly advancing disease. Furthermore, it is not always possible to generate clinically relevant doses of CAR T-cells from heavily pre-treated, often lymphopenic patients. A previously collected allogeneic product could overcome these limitations; however, allogeneic T-cells (even if HLA-matched) carry a significant risk of graft-versus-host disease (GVHD) mediated through their native ?? T-cell receptor prohibiting their use as a clinical product without further manipulation to eliminate the T cell receptor. Natural killer (NK) cells provide an extremely attractive alternative to T-cells for CAR engineering. NK cells do not cause GVHD and thus open opportunities to produce an off-the-shelf product for immediate clinical use. Moreover, as engineered NK cells should also retain their full array of native receptors, they have the potential to exert cytotoxicity through mechanisms other than that dictated by the specificity of the CAR, which in principle could reduce the risk of relapse mediated by loss of CAR-targeted antigen, as reported for CAR-T cell therapy. Autologous NK cells can be reproducibly generated in vitro, but have extremely limited activity against autologous tumor which cannot be overcome by CAR engineering. Cord blood (CB) is a readily available source of allogeneic NK cells with clear advantages. CB is available as an off-the-shelf frozen product, an advantage that has been bolstered by methods to generate large numbers of highly functional NK cells from frozen CB units ex vivo. The generation of CAR-transduced NK cells from frozen CB units stored in large global CB bank inventories holds promise for widespread scalability that cannot be replicated with individual adult donors who require screening and leukapheresis.
In Aim 1 we will perform the first-inhuman clinical trial to test the safety and efficacy of CB-NK cells engineered to express a CAR against CD19 (a B cell-specific antigen), to ectopically produce IL-15 to support their in vivo proliferation and persistence, and to express a suicide gene, based on IC9, that will address safety concerns related to the potential risk of direct toxicity;
In Aim 2 we will apply highly innovative correlative studies to describe the therapeutic potential of the clinical trial;
Aim 3 in preclinical murine studies, we will protect the transduced NK cells from the TGF-?/SMAD signaling axis using a novel retroviral construct that, in addition to CAR.CD19 and IL-15, includes the gene for the dominant-negative version of human TGF? receptor II (TGF?- DNRII) for next-generation clinical studies.

Public Health Relevance

In this proposal, we seek to improve the outcome of patients with relapsed or refractory acute lymphoblastic leukemia (ALL) by harnessing the power of the innate immune system, represented by natural killer (NK) cells, in a manner that is straightforward, reproducible and cost effective. We can now manufacture NK cells from cord blood in our laboratory and further enhance their ability to kill CD19+ malignant cells, by genetically modifying them to recognize a common molecule, CD19, on B cell malignancies and by enhancing their persistence by IL-15 to sufficient numbers and quality for use in cancer patients, placing us in an ideal position to begin clinical trials of this immunotherapy in patients with ALL. We will also be testing methods to render engineered NK cells more potent by protecting them from the inhibitory cytokine TGF-beta in the ALL microenvironment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA100632-16
Application #
9485522
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
16
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Yan, Fangrong; Zhu, Huihong; Liu, Junlin et al. (2018) Design and inference for 3-stage bioequivalence testing with serial sampling data. Pharm Stat 17:458-476
Kelly, Andrew D; Madzo, Jozef; Madireddi, Priyanka et al. (2018) Demethylator phenotypes in acute myeloid leukemia. Leukemia 32:2178-2188
Levis, Mark J; Perl, Alexander E; Altman, Jessica K et al. (2018) A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations. Blood Adv 2:825-831
Shah, Maitri Y; Ferracin, Manuela; Pileczki, Valentina et al. (2018) Cancer-associated rs6983267 SNP and its accompanying long noncoding RNA CCAT2 induce myeloid malignancies via unique SNP-specific RNA mutations. Genome Res 28:432-447
Masarova, Lucia; Verstovsek, Srdan; Hidalgo-Lopez, Juliana E et al. (2018) A phase 2 study of ruxolitinib in combination with azacitidine in patients with myelofibrosis. Blood 132:1664-1674
Good, Charly Ryan; Panjarian, Shoghag; Kelly, Andrew D et al. (2018) TET1-Mediated Hypomethylation Activates Oncogenic Signaling in Triple-Negative Breast Cancer. Cancer Res 78:4126-4137
Choi, Sangbum; Kang, Sangwook; Huang, Xuelin (2018) Smoothed quantile regression analysis of competing risks. Biom J 60:934-946
Boddu, Prajwal; Kantarjian, Hagop; Garcia-Manero, Guillermo et al. (2018) The emerging role of immune checkpoint based approaches in AML and MDS. Leuk Lymphoma 59:790-802
Yang, Tian-Hui; St John, Lisa S; Garber, Haven R et al. (2018) Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol 201:1389-1399
Rivera-Del Valle, Nilsa; Cheng, Tiewei; Irwin, Mary E et al. (2018) Combinatorial effects of histone deacetylase inhibitors (HDACi), vorinostat and entinostat, and adaphostin are characterized by distinct redox alterations. Cancer Chemother Pharmacol 81:483-495

Showing the most recent 10 out of 487 publications