The objectives of the Developmental Research Projects Program are to provide a continuous flow of new ideas and projects to stimulate myeloma research in the context of the Myeloma SPORE. It encourages new research directions and methodologies and facilitates collaborations. By providing initial support to pilot projects, it will foster the development of new translational projects. It also allows the Myeloma SPORE to have participation and recruitment of new investigators not only from the DF/HCC and Mayo Clinic, but also from outside institutions. Our Developmental Research Program during the previous funding period was extremely successful, with three projects in this renewal SPORE application directly evolving from prior Developmental Projects. This Program will continue to rely on scientific and programmatic review by the Governance Committee, which will assure selection of the most promising, highest quality, projects with high likelihood of translational impact. To achieve this goal, we will: 1) Solicit applications and/or identify novel myeloma research projects 2) Evaluate these projects for funding, 3) Fund the most innovative developmental projects, 4) Re-evaluate projects for possible transition into full project status, and 5) Evaluate success of the program.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA100707-10
Application #
8382442
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
2013-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
10
Fiscal Year
2012
Total Cost
$129,410
Indirect Cost
$35,834
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Zhang, L; Tai, Y-T; Ho, M et al. (2017) Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J 7:e547
Jain, Salvia; Washington, Abigail; Leaf, Rebecca Karp et al. (2017) Decitabine Priming Enhances Mucin 1 Inhibition Mediated Disruption of Redox Homeostasis in Cutaneous T-Cell Lymphoma. Mol Cancer Ther 16:2304-2314
Gullà, A; Hideshima, T; Bianchi, G et al. (2017) Protein arginine methyltransferase 5 has prognostic relevance and is a druggable target in multiple myeloma. Leukemia :
Harada, T; Ohguchi, H; Grondin, Y et al. (2017) HDAC3 regulates DNMT1 expression in multiple myeloma: therapeutic implications. Leukemia 31:2670-2677
Cholujova, Danka; Bujnakova, Zdenka; Dutkova, Erika et al. (2017) Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 179:756-771
Bouillez, A; Rajabi, H; Jin, C et al. (2017) MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene 36:4037-4046
Das, Deepika Sharma; Das, Abhishek; Ray, Arghya et al. (2017) Blockade of Deubiquitylating Enzyme USP1 Inhibits DNA Repair and Triggers Apoptosis in Multiple Myeloma Cells. Clin Cancer Res 23:4280-4289
Tagde, Ashujit; Markert, Tahireh; Rajabi, Hasan et al. (2017) Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget 8:69237-69249
Ray, A; Das, D S; Song, Y et al. (2017) Combination of a novel HDAC6 inhibitor ACY-241 and anti-PD-L1 antibody enhances anti-tumor immunity and cytotoxicity in multiple myeloma. Leukemia :
Song, Y; Li, S; Ray, A et al. (2017) Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 36:5631-5638

Showing the most recent 10 out of 388 publications