A prominent feature of multiple myeloma (MM) and other malignancies is significant genomic instability leading to genetic changes which ultimately result in acquisition of drug resistance and progression of disease. In the previous funding period, we evaluated telomerase as a target in MM, and have conducted a first-in-human study evaluating telomerase inhibitor in MM. Our in vitro and in vivo evaluations have shown that homologous recombination (HR) provides an alternative pathway to maintain telomeres and overcome effects of telomerase inhibition. We have further evaluated the role of HR in MM, and observed that HR activity is significantly higher in MM cells compared to normal plasma cells;and plays a significant role in acquisition of new genomic changes overtime, as demonstrated using various methods including: copy number alteration by array CGH, new translocations using paired end sequencing, and acquisition of novel mutations using whole genome sequencing of paired samples. Importantly, we have observed that inhibition of HR activity reduces acquisition of new genetic changes;and conversely, that induction of HR leads to increased genetic instability in MM, associated with the development of drug resistance. Our emerging focus of investigation therefore has been to define the molecular basis of these evolving genetic changes, and to devise strategies to suppress genomic evolution to make tumor cells static, thereby maintaining sensitivity to therapy. We have now focused our attention on understanding the role of nucleases, a key component of HR and observed elevated endonuclease activity in MM and demonstrated that knock-down of AP endonuclease leads to inhibition of HR and reduction in the rate of new mutations and conversely induction of AP endonuclease induces genomic instability and transformation of normal cells. Based on these preliminary data, we hypothesize that elevated nuclease activity mediates DNA instability in MM and may therefore contribute to the development of drug resistance and disease progression. To this end, we will pursue the following specific aims:
Specific Aim 1 : To evaluate the role of elevated nuclease activity, a key mediator of genomic instability, as a marker of prognosis Specific Aim 2: To evaluate the molecular consequences of elevated nuclease activity in normal and MM cells.
Specific Aim 3 : To develop small molecule inhibitors of endonuclease using a high-throughput, cell-based, phenotypic screen to prevent evolution of genomic changes and progression in MM. The proposed studies will improve our understanding of genomic progression in MM and may facilitate the development of prognostic tests for disease progression, as well as identify novel therapeutic strategies to prevent evolution of the disease and development of drug resistance. The principles and agents identified here will be applicable to a majority of other malignancies.

Public Health Relevance

The proposed studies will improve our understanding of genomic progression in MM and may facilitate the development of prognostic tests for disease progression, as well as identify novel therapeutic strategies to prevent evolution of the disease and development of drug resistance. The principles and agents identified here will be applicable to a majority of other malignancies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
2P50CA100707-11A1
Application #
8607270
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (O1))
Project Start
2003-09-01
Project End
2018-08-31
Budget Start
2013-09-18
Budget End
2014-08-31
Support Year
11
Fiscal Year
2013
Total Cost
$292,214
Indirect Cost
$113,800
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Hu, Y; Song, W; Cirstea, D et al. (2015) CSNK1?1 mediates malignant plasma cell survival. Leukemia 29:474-82
Bae, J; Prabhala, R; Voskertchian, A et al. (2015) A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218-29
Suzuki, R; Hideshima, T; Mimura, N et al. (2015) Anti-tumor activities of selective HSP90?/? inhibitor, TAS-116, in combination with bortezomib in multiple myeloma. Leukemia 29:510-4
Campigotto, Federico; Weller, Edie (2014) Impact of informative censoring on the Kaplan-Meier estimate of progression-free survival in phase II clinical trials. J Clin Oncol 32:3068-74
Hideshima, T; Mazitschek, R; Santo, L et al. (2014) Induction of differential apoptotic pathways in multiple myeloma cells by class-selective histone deacetylase inhibitors. Leukemia 28:457-60
Greenberg, A J; Rajkumar, S V; Therneau, T M et al. (2014) Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia 28:398-403
Lohr, Jens G; Adalsteinsson, Viktor A; Cibulskis, Kristian et al. (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479-84
Anderson, K K; Flora, N; Archie, S et al. (2014) A meta-analysis of ethnic differences in pathways to care at the first episode of psychosis. Acta Psychiatr Scand 130:257-68
Landgren, O; Graubard, B I; Katzmann, J A et al. (2014) Racial disparities in the prevalence of monoclonal gammopathies: a population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia 28:1537-42
Yin, Li; Kufe, Turner; Avigan, David et al. (2014) Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 123:2997-3006

Showing the most recent 10 out of 184 publications