A prominent feature of multiple myeloma (MM) and other malignancies is significant genomic instability leading to genetic changes which ultimately result in acquisition of drug resistance and progression of disease. In the previous funding period, we evaluated telomerase as a target in MM, and have conducted a first-in-human study evaluating telomerase inhibitor in MM. Our in vitro and in vivo evaluations have shown that homologous recombination (HR) provides an alternative pathway to maintain telomeres and overcome effects of telomerase inhibition. We have further evaluated the role of HR in MM, and observed that HR activity is significantly higher in MM cells compared to normal plasma cells;and plays a significant role in acquisition of new genomic changes overtime, as demonstrated using various methods including: copy number alteration by array CGH, new translocations using paired end sequencing, and acquisition of novel mutations using whole genome sequencing of paired samples. Importantly, we have observed that inhibition of HR activity reduces acquisition of new genetic changes;and conversely, that induction of HR leads to increased genetic instability in MM, associated with the development of drug resistance. Our emerging focus of investigation therefore has been to define the molecular basis of these evolving genetic changes, and to devise strategies to suppress genomic evolution to make tumor cells static, thereby maintaining sensitivity to therapy. We have now focused our attention on understanding the role of nucleases, a key component of HR and observed elevated endonuclease activity in MM and demonstrated that knock-down of AP endonuclease leads to inhibition of HR and reduction in the rate of new mutations and conversely induction of AP endonuclease induces genomic instability and transformation of normal cells. Based on these preliminary data, we hypothesize that elevated nuclease activity mediates DNA instability in MM and may therefore contribute to the development of drug resistance and disease progression. To this end, we will pursue the following specific aims:
Specific Aim 1 : To evaluate the role of elevated nuclease activity, a key mediator of genomic instability, as a marker of prognosis Specific Aim 2: To evaluate the molecular consequences of elevated nuclease activity in normal and MM cells.
Specific Aim 3 : To develop small molecule inhibitors of endonuclease using a high-throughput, cell-based, phenotypic screen to prevent evolution of genomic changes and progression in MM. The proposed studies will improve our understanding of genomic progression in MM and may facilitate the development of prognostic tests for disease progression, as well as identify novel therapeutic strategies to prevent evolution of the disease and development of drug resistance. The principles and agents identified here will be applicable to a majority of other malignancies.

Public Health Relevance

The proposed studies will improve our understanding of genomic progression in MM and may facilitate the development of prognostic tests for disease progression, as well as identify novel therapeutic strategies to prevent evolution of the disease and development of drug resistance. The principles and agents identified here will be applicable to a majority of other malignancies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA100707-12
Application #
8764974
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
12
Fiscal Year
2014
Total Cost
$296,416
Indirect Cost
$115,436
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Das, D Sharma; Ray, A; Das, A et al. (2016) A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia 30:2187-2197
Tagde, Ashujit; Rajabi, Hasan; Stroopinsky, Dina et al. (2016) MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget 7:38974-38987
Lin, Jianhong; Zhang, Weihong; Zhao, Jian-Jun et al. (2016) A clinically relevant in vivo zebrafish model of human multiple myeloma to study preclinical therapeutic efficacy. Blood 128:249-52
Hunter, Zachary R; Xu, Lian; Yang, Guang et al. (2016) Transcriptome sequencing reveals a profile that corresponds to genomic variants in Waldenström macroglobulinemia. Blood 128:827-38
Ray, Arghya; Ravillah, Durgadevi; Das, Deepika S et al. (2016) A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br J Haematol 174:397-409
Mullikin, Trey C; Rajkumar, S Vincent; Dispenzieri, Angela et al. (2016) Clinical characteristics and outcomes in biclonal gammopathies. Am J Hematol 91:473-5
An, Gang; Acharya, Chirag; Feng, Xiaoyan et al. (2016) Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood 128:1590-603
Tagde, Ashujit; Rajabi, Hasan; Bouillez, Audrey et al. (2016) MUC1-C drives MYC in multiple myeloma. Blood 127:2587-97
Jiang, H; Acharya, C; An, G et al. (2016) SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 30:399-408
Gullà, Annamaria; Di Martino, Maria Teresa; Gallo Cantafio, Maria Eugenia et al. (2016) A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clin Cancer Res 22:1222-33

Showing the most recent 10 out of 351 publications