The goals of the Tissue Bank Core are to aid SPORE investigators: 1) to identify tumor biologic and molecular genetic correlates of diagnosis, prognosis, response, progression, and survival in the context of the SPORE related investigations;2) to maintain a searchable database of clinical and laboratory data for use by SPORE investigators;and 3) to provide a resource of banked specimens for future studies. Core Laboratory functions are designed to increase the power of the individual projects to detect biologic differences among patients entering the SPORE studies, to identify molecular correlates of response versus resistance, and to be flexible enough to address individual investigator needs. In the previous funding period, the tissue core received, processed, stored, archived and distributed clinically-annotated cellular (bone marrow and PB cells), molecular (DNA and RNA), and serum samples to investigators participating in this SPORE. Samples from the SPORE have been collected, tested, and archived separately from other Core resources, such as the DF/HCC and Program Project reference laboratories;however, these resources are being shared between this core resource, thereby increasing the pool of samples available for correlative science by the SPORE investigators. Importantly, in this renewal application we are now collaborating with the Intergroupe Francophone du Myeloma (IFM) in sharing archived and future samples. IFM has over 10,000 clinically annotated samples, some with long follow ups of up to 8-10 years. During last 3 years we have shared samples between our groups and generated number of joint publications. Due to the increased needs of our growing SPORE and collaborative tissue bank, we have utilized standard operating procedures for bone marrow processing, myeloma cell purification, and cryopreservation across sites here at Dana Farber and in IFM. This Core provides an independent, current, and quickly searchable database of clinical and laboratory results and archived biospecimens. Data forms completed at the time of collection of the samples are entered into a common clinical, laboratory, and archival database. Follow up data is obtained and entered as required. All data are then stored in a common database accessible by the Statistics Center. All patients have measurement of key biological variables requested by SF'ORE investigators. Unused specimen including sorted cells, DNA, RNA, and cytospin slides are stored for future use on all patients. Subsequent use of banked samples beyond that specified in this SPORE proposal will be provided only with agreement from the SPORE Director and the SPORE Principal Investigators, after approval from the SPORE Tissue Use Committee.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Hu, Y; Song, W; Cirstea, D et al. (2015) CSNK1?1 mediates malignant plasma cell survival. Leukemia 29:474-82
Bae, J; Prabhala, R; Voskertchian, A et al. (2015) A multiepitope of XBP1, CD138 and CS1 peptides induces myeloma-specific cytotoxic T lymphocytes in T cells of smoldering myeloma patients. Leukemia 29:218-29
Suzuki, R; Hideshima, T; Mimura, N et al. (2015) Anti-tumor activities of selective HSP90?/? inhibitor, TAS-116, in combination with bortezomib in multiple myeloma. Leukemia 29:510-4
Campigotto, Federico; Weller, Edie (2014) Impact of informative censoring on the Kaplan-Meier estimate of progression-free survival in phase II clinical trials. J Clin Oncol 32:3068-74
Hideshima, T; Mazitschek, R; Santo, L et al. (2014) Induction of differential apoptotic pathways in multiple myeloma cells by class-selective histone deacetylase inhibitors. Leukemia 28:457-60
Greenberg, A J; Rajkumar, S V; Therneau, T M et al. (2014) Relationship between initial clinical presentation and the molecular cytogenetic classification of myeloma. Leukemia 28:398-403
Lohr, Jens G; Adalsteinsson, Viktor A; Cibulskis, Kristian et al. (2014) Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol 32:479-84
Anderson, K K; Flora, N; Archie, S et al. (2014) A meta-analysis of ethnic differences in pathways to care at the first episode of psychosis. Acta Psychiatr Scand 130:257-68
Landgren, O; Graubard, B I; Katzmann, J A et al. (2014) Racial disparities in the prevalence of monoclonal gammopathies: a population-based study of 12,482 persons from the National Health and Nutritional Examination Survey. Leukemia 28:1537-42
Yin, Li; Kufe, Turner; Avigan, David et al. (2014) Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. Blood 123:2997-3006

Showing the most recent 10 out of 184 publications