The Tissue Acquisition, Pathology, and Clinical Data (TAPCD) Core has several purposes, the first and foremost of which is to maintain a tissue, blood, and urine repository for the various investigators participating in this SPORE. This task involves the collection, freezing and storage of kidney cancer and paired normal kidney tissues as well as blood and urine from consenting RCC patients. As of July 2008, frozen tissue is available on 643 patients. In addition, 1088 patients have at least one blood sample and 741 patients have at least one urine sample stored in the specimen repository. The TAPCD Core is also responsible for the maintenance of a clinical database on all consenting kidney cancer patients. This database as well as the specimen tracking and secured data management systems provide an informatics link throughout the participating DF/HCC hospitals which allow for the sharing of clinical outcome data among SPORE investigators. The TAPCD Core also provides state-of-the-art histology and molecular pathology services to SPORE Investigators. These services include: routine histology, histopathological evaluation, immunohistochemistry, in situ hybridization, computer-assisted image analysis, and generation and interrogation of tissue microarrays. In addition, this Core performs tissue microdissection, and DNA and RNA preparation for molecular studies. Finally, the TAPCD Core is responsible for performing mutation and methylation analysis of the VHL gene in clear cell RCC specimens stored in the SPORE tissue bank. Finally, the TAPCD Core collaborates with the Biostatistics Core in data analysis and auditing. This arrangement facilitates the analysis of clinical data from kidney cancer patients consented to our protocols and the correlation of clinical data with results from the various laboratory assays being carried out as part of individual SPORE Projects.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Beth Israel Deaconess Medical Center
United States
Zip Code
McDermott, David F; Cheng, Su-Chun; Signoretti, Sabina et al. (2015) The high-dose aldesleukin "select" trial: a trial to prospectively validate predictive models of response to treatment in patients with metastatic renal cell carcinoma. Clin Cancer Res 21:561-8
Zerbini, Luiz Fernando; Bhasin, Manoj K; de Vasconcellos, Jaira F et al. (2014) Computational repositioning and preclinical validation of pentamidine for renal cell cancer. Mol Cancer Ther 13:1929-41
Akhavanfard, Sara; Vargas, Sara O; Han, Moonjoo et al. (2014) Inactivation of the tumor suppressor WTX in a subset of pediatric tumors. Genes Chromosomes Cancer 53:67-77
Bhatt, Rupal S; Atkins, Michael B (2014) Molecular pathways: can activin-like kinase pathway inhibition enhance the limited efficacy of VEGF inhibitors? Clin Cancer Res 20:2838-45
Choueiri, T K; Fay, A P; Gray, K P et al. (2014) PD-L1 expression in nonclear-cell renal cell carcinoma. Ann Oncol 25:2178-84
Panka, David J; Buchbinder, Elizabeth; Giobbie-Hurder, Anita et al. (2014) Clinical utility of a blood-based BRAF(V600E) mutation assay in melanoma. Mol Cancer Ther 13:3210-8
Gubin, Matthew M; Zhang, Xiuli; Schuster, Heiko et al. (2014) Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515:577-81
Wang, Xiaoen; Bullock, Andrea J; Zhang, Liang et al. (2014) The role of angiopoietins as potential therapeutic targets in renal cell carcinoma. Transl Oncol 7:188-95
Davis, Caleb F; Ricketts, Christopher J; Wang, Min et al. (2014) The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26:319-30
Choueiri, Toni K; Je, Youjin; Cho, Eunyoung (2014) Analgesic use and the risk of kidney cancer: a meta-analysis of epidemiologic studies. Int J Cancer 134:384-96

Showing the most recent 10 out of 63 publications