The mechanistic target of Rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cellular growth and metabolism. Two allosteric inhibitors of mTORC1, the rapalogs temsirolimus and everolimus, are FDA approved for renal cell carcinoma (RCC). However, despite the fact that mTORC1 appears to be activated in the majority of RCC, only a subset of patients derives significant clinical benefit from these agents. Currently there are no predictive biomarkers of treatment response to mTORC1 inhibitors in RCC. The recent TCGA analysis of RCC identified multiple genetic alterations that potentially result in constitutive activation of the mTOR pathway (seen in 8-17%, e.g. MTOR). This leads to our first hypothesis, that mutations in genes encoding critical proteins in the PI3K-mTOR pathway will be associated with clinical response to rapalog therapy in RCC. Recently several drugs have been developed that are ATP-competitive mTOR kinase inhibitors. This leads to our second hypothesis, that ATP-competitive mTOR kinase inhibitors will have benefit for patients who progress on rapalog therapy. CRISPR gene editing technology has recently been developed, and enables genome wide screens for enhancers of rapalog effects on cell growth. This leads to our third hypothesis, that a genome-wide CRISPR/Cas9 screen will identify genes that are essential for kidney cancer growth and/or confer synthetic lethality when combined with mTOR inhibition, thereby leading to an improved therapeutic strategy. Hence, our specific aims are: 1A: To identify genetic predictors of response to agents targeting the mTOR pathway in advanced RCC. 1B: To study mechanisms of resistance to mTOR inhibitors occurring in vivo in patients. 2: To conduct an mTOR-kinase inhibitor (MLN0128) trial in metastatic RCC patients who progressed on rapalog therapy, including genetic analysis and cell line development. 3A: To conduct genome-wide CRISPR/Cas9 screens to identify genes essential or conditionally essential upon mTOR inhibition in kidney cancer cells in vitro; to validate and prioritize these genes; and to determine the contribution of hit genes to tumor cell growth in vivo.

Public Health Relevance

The proposed studies will: 1) identify genetically defined subsets of RCC patients that have a sustained clinical response to rapalog therapy, to enable a personalized medicine approach to treatment selection in RCC, and define mechanisms of resistance to rapalogs when they develop; 2) examine the clinical benefit of mTOR kinase inhibitor therapy in RCC; 3) use a novel CRISPR/Cas9 screen to identify synergistic therapeutic approaches to targeting mTOR in RCC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA101942-14
Application #
9554210
Study Section
Special Emphasis Panel (ZCA1)
Program Officer
Kuzmin, Igor A
Project Start
Project End
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
14
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
Scelo, Ghislaine; Muller, David C; Riboli, Elio et al. (2018) KIM-1 as a Blood-Based Marker for Early Detection of Kidney Cancer: A Prospective Nested Case-Control Study. Clin Cancer Res 24:5594-5601
Zhang, Jinfang; Bu, Xia; Wang, Haizhen et al. (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91-95
Gao, Xin; Jegede, Opeyemi; Gray, Connor et al. (2018) Comprehensive Genomic Profiling of Metastatic Tumors in a Phase 2 Biomarker Study of Everolimus in Advanced Renal Cell Carcinoma. Clin Genitourin Cancer 16:341-348
Liu, Wenjing; Chen, Binbin; Wang, Yang et al. (2018) RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism. Proc Natl Acad Sci U S A 115:E1475-E1484
Iorgulescu, J Bryan; Braun, David; Oliveira, Giacomo et al. (2018) Acquired mechanisms of immune escape in cancer following immunotherapy. Genome Med 10:87
Gopal, Raj K; Kübler, Kirsten; Calvo, Sarah E et al. (2018) Widespread Chromosomal Losses and Mitochondrial DNA Alterations as Genetic Drivers in Hürthle Cell Carcinoma. Cancer Cell 34:242-255.e5
Nakashima, Hiroshi; Alayo, Quazim A; Penaloza-MacMaster, Pablo et al. (2018) Modeling tumor immunity of mouse glioblastoma by exhausted CD8+ T cells. Sci Rep 8:208
Signoretti, Sabina; Flaifel, Abdallah; Chen, Ying-Bei et al. (2018) Renal Cell Carcinoma in the Era of Precision Medicine: From Molecular Pathology to Tissue-Based Biomarkers. J Clin Oncol :JCO2018792259
Hamieh, Lana; Choueiri, Toni K; Ogórek, Barbara et al. (2018) Mechanisms of acquired resistance to rapalogs in metastatic renal cell carcinoma. PLoS Genet 14:e1007679
Gao, Xin; McDermott, David F (2018) Ipilimumab in combination with nivolumab for the treatment of renal cell carcinoma. Expert Opin Biol Ther 18:947-957

Showing the most recent 10 out of 153 publications