The mission of the Developmental Research Program (DRP) of the Pancreatic Cancer SPORE is to identify and fund developmental research projects which explore innovative ideas with significant potential to reduce the incidence, morbidity, and mortality of pancreatic cancer. Further, we propose to involve both Morehouse School of Medicine (MSM) and Tuskegee University (TU) in both this program and the Career Development Program of the overall SPORE. Both the Pancreatic SPORE and the UAB Comprehensive Cancer Center (CCC) have successful track records for obtaining and administering developmental research funds. Also, the Division of Preventive Medicine, which houses both the CCC Biostatistics and Informatics Unit and the Minority Health and Research Center, has several years of productive collaboration with both MSM and TU relevant to these programs. The DRP is a most valuable and productive component ofthe UAB Pancreas, Breast, Brain, and prior Ovarian SPORE programs. The development of innovative research ideas in pancreatic cancer is critically dependent on the availability of flexible funding. This Pancreatic Cancer SPORE intends to fund 6 developmental pilot projects annually (two at UAB and four at UMN, including those selected from MSM and TU). The projects will be funded at $50,000/year (6 projects will require $300,000/year). The funds are derived from the proposed SPORE budgets ($50,000 UAB budget and $50,000 UMN budget), UAB institutional funds ($50,000) and UMN institutional funds ($150,000) as described in the institutional letters of commitment. Funding is for 1 year and is renewable for 1 additional year depending on progress. The success of a DRP is determined by its ability to recruit and train junior or new investigators in pancreatic cancer who are committed to translational pancreatic cancer research. The benchmarks for success of the program include participation of awardees in major projects, publication of translational pancreatic cancer research in excellent peer-reviewed journals, and external peer-reviewed funding. A major success of this DRP has been the engagement of UAB and UMN scientists previously not focused specifically on pancreatic cancer. In particular, Dr. Chris Klug is a very good molecular biologist whose major emphasis had been in acute leukemia and leukemic murine models. His project brought his molecular genetic expertise into transgenic pancreatic cancer models, which has progressed to a major Project of this competitive renewal resubmission. Similarly, Dr. Dan Saltzman, Associate Professor of Surgery, has a committed interest in augmentation of the immune system through attenuated Sa/mone//a-lL-2 to fight hepatoblastoma in children. His collaboration with Dr. Chris Klug (Project 1) led to the development of a novel syngeneic immunocompetent pancreatic cancer mouse model, successful IND, and FDA approval ofthe Salmonetla- L-2 immunotoxin for pancreatic cancer clinical trial with a recently funded (2008) R21. Another DRP success to highlight is Dr. Martin Johnson, whose prior efforts were focused on the pharmacogenomics of FU in colon cancer. Dr. Johnson developed a critical assay via MA-RT-PCR to evaluate nanogram quantities of RNA from pancreatic FNA samples. Dr. Johnson's work has produced two publications documenting the reproducibility and accuracy of the technique and sample acquisition. This has proven to be a critical element of the Tissue Core and has provided further basis for correlative studies proposed in Project 3. The success of this program is also evidenced in that we have 2 pilot studies ongoing at minority institutions

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA101955-09
Application #
8528369
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
9
Fiscal Year
2013
Total Cost
$77,587
Indirect Cost
Name
University of Alabama Birmingham
Department
Type
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Hwang, Chang-Il; Boj, Sylvia F; Clevers, Hans et al. (2016) Preclinical models of pancreatic ductal adenocarcinoma. J Pathol 238:197-204
Kim, Harrison; Samuel, Sharon; Lopez-Casas, Pedro et al. (2016) SPARC-Independent Delivery of Nab-Paclitaxel without Depleting Tumor Stroma in Patient-Derived Pancreatic Cancer Xenografts. Mol Cancer Ther 15:680-8
Baker, Lindsey A; Tiriac, Hervé; Clevers, Hans et al. (2016) Modeling pancreatic cancer with organoids. Trends Cancer 2:176-190
Tzou, Ywh-Min; Bailey, Sarah K; Yuan, Kaiyu et al. (2016) Identification of initial leads directed at the calmodulin-binding region on the Src-SH2 domain that exhibit anti-proliferation activity against pancreatic cancer. Bioorg Med Chem Lett 26:1237-44
Biffi, G; Öhlund, D; Tuveson, D (2016) Building up the tension between the epithelial and stromal compartment in pancreatic ductal adenocarcinoma. Cell Death Differ 23:1265-6
Chio, Iok In Christine; Jafarnejad, Seyed Mehdi; Ponz-Sarvise, Mariano et al. (2016) NRF2 Promotes Tumor Maintenance by Modulating mRNA Translation in Pancreatic Cancer. Cell 166:963-76
Schultz, Matthew J; Holdbrooks, Andrew T; Chakraborty, Asmi et al. (2016) The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype. Cancer Res 76:3978-88
Nam, Ki-Hwan; Kim, Peter; Wood, David K et al. (2016) Multiscale Cues Drive Collective Cell Migration. Sci Rep 6:29749
Jones, Jacqueline; Mukherjee, Angana; Karanam, Balasubramanyam et al. (2016) African Americans with pancreatic ductal adenocarcinoma exhibit gender differences in Kaiso expression. Cancer Lett 380:513-22
Ho, Yen-Yi; Starr, Timothy K; LaRue, Rebecca S et al. (2016) Case-oriented pathways analysis in pancreatic adenocarcinoma using data from a sleeping beauty transposon mutagenesis screen. BMC Med Genomics 9:16

Showing the most recent 10 out of 152 publications